
A TYPE-BASED APPROACH TO GENERATIVE PARAMETER MAPPING

Josué Moreno

School
Department

Vesa Norilo

Sibelius Academy
Centre for Music & Technology

Helsinki, Finland

ABSTRACT

This paper presents a type-based strategy for automat-
ing parameter mapping. It approaches the problem of in-
tegrating a disparate set of control signals into a musical
application while minimizing the amount of boilerplate
code the user has to write in order to connect control sig-
nals to unit generators.

The method is based on polymorphic mapper compo-
nents and signal metadata that allows typed connections.
Concepts for a semantically meaningful parameter map-
ping system for musical applications are explored and im-
plemented in the Kronos programming language.

1. INTRODUCTION

Much of digital instrument building is point-to-point rout-
ing of signals. Often, these signals will need to be adapted
on the go: for an instrument to be playable, its control sur-
face must be mapped so that most of its parameter space is
musically meaningful, maximizing expressiveness while
being as economical as possible.

This results in carefully arranged adaptation layers,
where the output from a control is scaled, translated and
transformed to a range that is appropriate for an audio
generator. Changing either the control or the generator
typically means that the entire adaptation layer must be
redesigned.

Little work has been done to standardize the funda-
mental mapping algorithms [8]. Likewise, few approaches
have been made towards an automatization of mapping,
with the exception of a neural networks based gesture iden-
tification and mapping libraries [10], which are not a gen-
eral purpose solution.

With no standard framework, instrument designers are
constantly reinventing the wheel, re-implementing map-
ping algorithms whenever creating a new instrument. Many
mapping operations are very common, so it makes sense
to design a general purpose software library that includes
these operations [8].

Not all the composers or instrument designers have the
necessary background to envision proper mapping schemes,
resulting in linear and oversimplified parameter transla-
tion. These are rarely musically satisfying [1].

The authors propose a method to perform automatic
parameter mapping based on an adaptation layer that can

automatically reconfigure itself based on the semantics of
both its input and output.

This paper is organized as follows; in Section 2, Pre-
vious Work, the current state of parameter mapping meth-
ods is examined. In Section 3, Type-basd mapping, the the
principles of such mapping strategy will be stated and im-
plementation details discussed. Finally, in Section 4, Ex-
amples, the authors will demonstrate the features of type-
based mapping.

2. PARAMETER MAPPING STRATEGIES

2.1. Fundamentals of Data Mapping

Data mapping is the process of creating data element map-
pings between two distinct data models. It consists of data
transformation or data mediation between a data source
and a destination.

Data-driven mapping is a recent approach in data map-
ping and involves simultaneously evaluating actual data
values in two data sources using heuristics and statistics
to automatically discover complex mappings between two
data sets.

Semantic Mapping consists of, given a data set, con-
structing a projection matrix that can be used for mapping
data elements from one dimensional space into another,
being or not not of the same dimension count. It is an al-
ternative to random mapping, principal components anal-
ysis and latent semantic indexing methods. [6]

Mapping in musical applications, as in the work done
by Miranda, has been mainly focused on several strate-
gies formalized as [2]; One to one; One to many; Many
to one; Many to many. These have been implemented
by the composers themselves or within a software appli-
cation that may carry aesthetic implications. Also, this
categorization is not so much a mapping strategy as an
overrall observation about different input/output configu-
rations one may encounter.

2.2. Survey of the Field

Previously, Steiner has made work towards a Catalog of
Mapping algorithms for the purpose of developing a Map-
ping Framework within Pd. [8] Continuing on previ-
ous developments such as the [hid] library [9], MnM for
Max/MSP [4] and ESCHER [7].

In these frameworks interaction between mapping mod-
ules is based on standardizing all parameter ranges to a

linear range of [0,1]. Any information on if the range
should be multidimensional, logarithmic or bipolar is dropped.

An interesting automatization of the mapping process
is presented in [10]. The method is based on machine
learning via neural networks that can extrapolate a map-
ping formalism from a data set of inputs and desired out-
puts. However, this method is mostly geared towards ges-
ture recognition and not intended as a general mapping
solution.

These approaches require that the user is an expert on
mapping strategies. They provide only the fundamental
building blocks for the design of such.

Research done on Simplicital Interpolation [3] is of
value here as an example of Random Incremental Map-
ping in the domain of instrument design. These inter-
polation techniques may produce reasonable intermediate
outputs for intermediate inputs out of discretely sampled
data. Still, the authors believe that interpolation is not
satisfying in a more general purpose mapping engine in
which, given the amount of possible scenarios, the nature
of the input data and the required output values, might not
make sense within an interpolation context.

2.3. Aesthetic Considerations and Goals

Most of the research done in the field of Data Mapping for
musical applications carries aesthetic implications. The
spectrum of available solutions range from highly devel-
oped systems that have a built-in workflow and aesthetic
to low level collections of primitives that present a steep
learning curve as well as require a plenty of boilerplate
programming to achieve simple tasks.

The aim of this research is to automate a lot of the
low level programming associated with mapping while re-
maining as neutral as possible as to how the user wants
to map parameters. Type-based metadata is offered as a
means for the mapping framework to be smarter, freeing
up the user to concentrate on solving the aesthetic prob-
lems rather than the technical details.

3. TOWARDS TYPE-BASED MAPPING MONADS

In computer science terminology, parameter mapping can
be described as a monad. It is essentially a processing
pipeline of functions, each of which transforms the data in
some way. In addition, monads can adapt to the context of
each sequence step, depending on the function in question
and the data being processed. The monad is a very broad
concept, but its applicability to mapping is explained in
the rest of this section.

3.1. Basic Mapping

Let us consider a simple parameter mapping of a MIDI
note to an oscillator, with the addition of a vibrato-producing
LFO. A straightforward implementation of this in a low
level modular environment might look like the mockup in
Figure 1.

Figure 1. Low level mock implementation of a MIDI con-
trolled Oscillator with vibrato

In most existing implementations, all the signals con-
sist of plain numerical data. The user is expected to un-
derstand that a conversion from a MIDI note number to
frequency in hertz is required. The LFO outputs a stan-
dard range, typically [−1,1]. More domain knowledge
is required in order to understand how to scale this into
a proper modulation depth; we assume a slider input of
[0,1] and treat this as a modulation depth percentage of
the fundamental frequency. Finally, the efficient DSP im-
plementation of an oscillator operates in cycles per sample
– requiring a final adaptation step from hertz.

The example given is artifically low level to demon-
strate the assumptions that tend to be present in even a
simple patch. For most adaptation steps, we must actively
think about the semantics of both input and output. This
knowledge must be reflected in our choice of processing
primitives; many conversion primitives are present solely
to define the types or units to convert between.

All this knowledge already exists in the patch. A MIDI
input, a slider and an LFO have a well-defined output
range. Likewise, the oscillator has a well-defined input
semantics. Why, then, does the user need to repeat all this
by programming each transformation step manually?

3.2. Typed Signals and Polymorphic Primitives

To enable smart behavior for mapping primitives, the au-
thors propose typed signals and polymorphic primitives
that generate a mapping monad. Metadata, such as an
appropriate unit, parameter range or curvature can be at-
tached to a signal to endow it with desired semantics. This
is called type; in contrast to raw data, type carries an an-
notation of what the data means.

Primitives can then be overloaded so that they respond
differently according to the type of the incoming signal.
Such functions are called polymorphic; a staple of func-
tional and object oriented programming. The distinct im-
plementations of the polymorphic function are called over-
loads.

This allows for a higher level parameter mapping frame-
work where the concepts are nearer to human thought and
further from the fundamental mathematical and logical
operations carried out by a computer, and the signal pro-
cessing framework can deduce most low level adaptation
steps from the context.

3.3. The Type-Primitive Matrix

Consider a processing chain that performs parameter map-
ping from a source to a final destination. Each link is a
named process with a certain semantic meaning; such as
“limit range”, “smooth” or “modulate”.

A framework with N mapping primitives and M signal
types can be envisioned as a NxM matrix where each cell
represents the polymorphic overload for a mapping prim-
itive x on an input signal of type y. Each overload has
an output signal of type z. Since z can influence overload
resolution of the next step in the processing chain, any
mapping primitive can exert influence over the entirety of
the chain following it.

This has huge potential for automating the mapping
process. For example, when a control signal source changes,
typically a large part of the following parameter mapping
chain must be adjusted. With appropriate type annotations
and overloads, this can happen automatically.

3.4. Taming the Combinatorics

The Type-Primitive matrix in Section 3.3 grows as a prod-
uct of the number of types and primitives in the system.
Implementing such a framework can quickly become non
feasible due to the number of overloads required. Several
strategies exist to deal with this.

3.4.1. Subtypes

If the signal types can naturally fit a hierarchical category,
subtyping can be leveraged. Common traits of several
types can be collected into a supertype, and overloads can
consider this instead of every subtype separately. Many
object oriented systems implement subtypes.

3.4.2. Generics

Generics are the approach chosen by the authors for the
implementation of this framework is generic programming,
as it is one of the main techniques of the Kronos[5] envi-
ronment. Similar results could be achieved with the C++
template metacompiler or a dynamically typed language
such as Javascript.

A generic mapping primitive is one that doesn’t ex-
plicitly define a fixed overload for each type, but rather
uses pattern matching to perform overload resolution. Such
an overload can be selected based upon some salient traits
of the incoming type – for example, whether the type sup-
ports ordering or a certain subset of arithmetic.

Some primitives may even delegate type specialiation
to their components. For example, a smoothing filter doesn’t
necessarily care about the precise type of the signal pass-
ing through, as long as sufficient arithmetic for the type is
defined – in this case, summation and multiplication. For
details on this mechanism, the reader is referred to prior
work[5].

Figure 2. Amplifiers driven by a decibel-format slider and
a linear [0,1] envelope.

4. EXAMPLE IMPLEMENTATION

4.1. About Kronos

For this research, the Kronos programming environment[5]
is used to provide the type system, polymorphism and
generative capabilities required by the mapping monads.

Kronos is a special purpose programming language in-
tended for musical signal processing tasks. It is targeted
to musicians and music technologists who want to create
customized signal processing solutions. Anything from
effect processors to virtual instruments can be built. The
Kronos engine offers a powerful functional programming
language, yet it can be easily used with a visual, patching-
based interface.

4.2. Simple Case

First we consider a simple amplitude control from a vari-
ety of sources. To motivate polymorphism, an overloaded
amplifier module is demonstrated. Two instances of the
amplifier are included in the patch. One of them is con-
trolled by a slider set in decibels, the other by a envelope
with a gain coefficient range of [0,1]. By using the seman-
tics of amplification instead of a multiplication, the mean-
ing of this simple program becomes obvious; in this con-
text, a level parameter is decibels is easy to understand.

With a standard multiplication, there’s no context from
which to deduce how to handle decibels – as multiplying
by a decibel quantity has its own, separate meaning. This
context is then provided by the end user, by the means of
inserting the appropriate mathematics to compute a linear
gain coefficient from an incoming decibel before the mul-
tiplication. The authors contend that this is something that
should be left to software.

4.3. Multidimensional

In this example, disparate real time control signals are
combined into a single three-dimensional parameter. Al-
though the example is contrived, it serves to demonstrate
some of the automation provided by the framework.

The example is shown in Figure 3. Three inputs are
generated by listening to a MIDI continuous controller,
analyzing an audio input and receiving an OSC event stream.
All these inputs can assign correct type information to

Figure 3. Mapping three disparate parameters to a Spatial
Panner

their output signal, describing the range of the signal. In
addition, the Envelope-Follower module receives two time
constants annotated as milliseconds.

Algorithm:Map is used to transform all three param-
eters at once, applying a transformation to a linear range
of [−1,1]. Because the x, y and z components have as-
sociated type information, the polymorphic To− Linear
function can deduce the appropriate scaling automatically.
The transformed values are combined into a single vec-
tor coordinate, which is used as a coordinate for a spatial
panner. A simple smoothing is applied by a filter – which
can maintain the vector coordinate semantics due to the
generic approach described in Section 3.4.2.

The spatializer can also leverage polymorphism; type
context can imply whether the control parameter is given
in polar or cartesian form, and if the panning happens in 2
or 3 dimensions.

5. CONCLUSIONS

In this paper, the authors have demonstrated some of the
possibilities and advantages of using polymorphism as a
mapping strategy based upon signal semantics. Types are
used as metadata that aid composed mapping monads to
configure themselves to account for disparate parameter
ranges.

We have the advantage of the generative nature of Kro-
nos programming language. To expand upon this we ap-
ply a type system to mapping. By abstracting the math
into software objects, mapping can be approached as a
system of higher level human logic.

Upon this, the authors are developing a framework for
Generative Music Composition and Performance based on
live audio and sensor data input. By making the mapping
process smarter and quicker to prototype we can enable
another way of interacting and conceiving generative mu-
sic.

The framework along with the Kronos compiler will
be made freely available to interested parties. It is con-
ceived as a Kronos library, but given its extensive OSC
and MIDI communication capabilities, interaction with
various software packages is feasible. Finished adapta-
tion layers can also be built into object code that can link

into any system that supports a C language interface.

6. REFERENCES

[1] E. M. Alexis Kirke, “Evaluating Mappings for Cel-
lular Automata Music,” in Interdisciplinary Centre
for Computer Music Research (ICCMR), Plymouth,
UK, 2006.

[2] E. R. Eaton J. Miranda, “New Approaches in Brain-
Computer Music Interfacing. Mapping EEG for
Real-Time Musical Control,” in Proceedings of Cre-
ativity at the Intersection of Music and Computation,
University of Plymouth, UK, 2012.

[3] C. Goudeseune, “Interpolated mappings for mu-
sical instruments,” in Organised Sound, 2002, p.
7(2):8596.

[4] F. B. R. Muller and N. Schnell., “MnM: a Max/MSP
mapping toolbox.” in Proceedings of the Confer-
ence on New Interfaces for Musical Expression
(NIME05), Vancouver, Canada, 2005.

[5] V. Norilo, “Introducing Kronos - A Novel Approach
to Signal Processing Languages,” in Proceedings
of the Linux Audio Conference, F. Neumann and
V. Lazzarini, Eds. Maynooth, Ireland: NUIM,
2011, pp. 9–16.

[6] T. B. L. Renato Fernandes Corra, “Dimensionality
Reduction of very large document collections by Se-
mantic Mapping,” in Proceedings of the 6th Interna-
tional Workshop on Self-Organizing Maps, Center
of Informatics, Federal University of Pernambuco,
Brasil, 2007.

[7] M. W. N. Schnell and J. B. Rovan., “Escher-
modeling and performing composed instruments in
real-time.” in IEEE Systems, Man, and Cybernetics,
1998.

[8] H. C. Steiner, “Towards a catalog and software li-
brary of mapping methods,” in Proceedings of the
International Conference on New Interfaces for Mu-
sical Expression (NIME06), Paris, France, 2006.

[9] H.-C. Steiner, “[hid] toolkit: a unified framework for
instrument design,” in Proceedings of the 2005 In-
ternational Conference on New Interfaces for Musi-
cal Expression (NIME05), Vancouver, BC, Canada,
2005.

[10] C. A. C. T. and H. C., “Real-time Gesture Mapping
in Pd Environment using Neural Networks,” in Pro-
ceedings of the International Conference on New In-
terfaces for Musical Expression (NIME04), Japan,
2004.

	1 Introduction
	2 Parameter Mapping Strategies
	2.1 Fundamentals of Data Mapping
	2.2 Survey of the Field
	2.3 Aesthetic Considerations and Goals

	3 Towards Type-Based Mapping Monads
	3.1 Basic Mapping
	3.2 Typed Signals and Polymorphic Primitives
	3.3 The Type-Primitive Matrix
	3.4 Taming the Combinatorics
	3.4.1 Subtypes
	3.4.2 Generics

	4 Example Implementation
	4.1 About Kronos
	4.2 Simple Case
	4.3 Multidimensional

	5 Conclusions
	6 References

