
KRONOS AS A VISUAL DEVELOPMENT TOOL FOR MOBILE
APPLICATIONS

Vesa Norilo

Sibelius Academy
Centre for Music & Technology, Helsinki, Finland

vnorilo@siba.fi

ABSTRACT

Kronos is a programming language and a compiler suite,
recently enhanced with a visual front end. It is designed
to facilitate programming of digital signal processors for
music. Kronos patches can be compiled either for real
time playback or into an intermediate language such as
C++, for integration in several third party frameworks.

This paper introduces the visual patcher for Kronos
along with productivity-boosting aspects of functional pro-
gramming and metaprogramming that are unique in the
visual domain. Higher order functions, closures and cap-
tured variables are examined pertaining to visually pro-
grammed signal processors. As a case study, a resonator
bank synthesizer is built in the Patcher and subsequently
exported as a component for iOS SDK.

1. INTRODUCTION

Many creative aspects of music technology involve pro-
gramming tasks. Instrument and effect design as well as
live electronics depend on the ability of the creative pro-
fessional to fashion custom signal processors.

There are several musical programming environments.
Among them, Supercollider[4] is a good example of tex-
tual programming harnessed for musical DSP. Pure Data[7]
offers a visual front end but is simplistic as a programming
language. PWGL[3] features a proper language and visual
interface, but the signal processing component is limited.

The aim of Kronos is to provide a powerful, easily
approachable language and combine it with a visual user
interface. The entire compiler suite is built around opti-
mization algorithms that make it possible to write high-
performance DSP programs in a high level language.

The rest of this paper is organized as follows; in Sec-
tion 2, a brief description of the core language is given.
In Section 3 the integration of textual and visual program-
ming is discussed. Section 4 deals with translating user
patches into code, with an iOS application as a case study.
Finally, Section 5 concludes the paper and presents future
avenues of research.

2. LANGUAGE OVERVIEW

The Kronos back end is a server application capable of
compiling textual programs. Several compile targets are

supported, including real time processing. This section
gives a brief overview of the language in order to contex-
tualize the visual patching environment. For an extended
discussion, the reader is referred to previous publications[5].

A full-featured functional language is provided. Ab-
stractions such as higher order functions and closures[2]
are supported, allowing sophisticated constructs to be used.

2.1. The Functional Reactive Paradigm

A central efficency aspect of signal processing algorithms
is the multirate problem. Significant optimization can be
achieved by updating parts of the algorithm at lower up-
date rates.

Kronos proposes functional reactive programming[8]
as a solution to the multirate problem. Nodes can act as
clock sources, causing the graph downstream to update
synchronously. A priority system ensures that more im-
portant clocks can override less important ones; a user in-
terface slider can be a local clock source, but once the con-
trol signal reaches the audio path, the audio clock should
take over. The reactive system has previously been dis-
cussed in depth[5].

The reactive aspect is designed to be ignored by the
beginner and intermediate user. The compiler includes
a factorizer capable of optimizing user functions for het-
erogenous signal rates with no effort on the part of the
programmer.

2.2. Type System

Kronos offers an algebraic type system[2] to deal with
data structure. In addition, data can be decorated with
user types to denote semantical meaning. For example, a
vector of two real numbers could equally well stand for a
complex number or a stereophonic signal. However, very
different behavior is expected in these two cases. When
multiplying, we expect the complex number case to fol-
low the laws of complex arithmetic. For a stereophonic
signal, a more sensible result is an element-wise multipli-
cation.

By utilizing polymorphism[2], the appropriate multi-
plication can be selected automatically based on the type
of the incoming signal. A function library can be designed
so that the end user need not worry about data types, yet
the functions behave as expected.

mailto:vnorilo@siba.fi

2.3. Generic Programming

Generic programming follows from the capabilities of the
type system. At source level, Kronos programs are type-
less and generic. For performance reasons they are stati-
cally typed during execution.

This is accomplished by a specialization pass reminis-
cent of the C++ template metacompiler[1]. When com-
piling a program, the data types of the signal flow are in-
ferred throughout, and appropriate forms of polymorphic
functions are selected at each point.

This process can generate versions of – specialize – all
functions in the system for any given argument. The only
requirement is that all the function calls the specialization
candidate makes can themselves be specialized. Eventu-
ally this requirement will propagate to the leaves of the
call tree, where arithmetic and logical primitives tend to
be found. Defining those for a certain user type can thus
enable previously written libraries to accept the said type.

This is very useful due to the number of permutations
encountered in DSP. A single filter function can be used
for single or double precision, real or complex, mono or
multichannel signals or any combination of these.

3. VISUAL USER INTERFACE

Since Kronos is aimed at musicians and music technol-
ogists in addition of programmers, a visual patching en-
vironment is provided to lower the barrier to entry. The
visual interface acts as a client, connecting to the back
end server over OSC [9].

Every effort is made to provide feature parity between
textual and visual programming. As certain tasks are more
natural to perform in writing while others are better suited
for visualization, programmers may choose which domain
to work in.

3.1. Integration of Text and Patching

The leading principle of the visual interface is that any
expression can be typed into a patch node. Whenever the
user starts typing, the node creation widget pops up.

The free text entry guarantees that all language con-
structs are available to the programmer. However, it is just
as confusing for the beginner as writing the entire program
in textual form in the first place. This is addressed by the
interactive suggestion list displayed during text entry.

Beginners can use the text entry widget like a live
search box into a predefined menu hierarchy. Advanced
users may wish to employ it more like a code completion
aid. Further inlets can be added to the expression by in-
serting an inlet token prefixed with $, such as $input. The
token itself is displayed as a tooltip for the inlet.

This scheme makes it simple to enter literals and con-
stants, as the user may just type them in to obtain the de-
sired node. Some examples of nodes are shown in Figure
1.

Figure 1. Constant, literal, tuple and a function node with
inlets.

3.1.1. Patching

Nodes with inlets can be connected to other nodes via
patch cords familiar to users of visual environments. In
the generated program, connections are represented by
variables. The value at the outlet is assigned to a unique
symbol. Subsequently, all inlets connected to the outlet
are replaced by references to this symbol.

3.2. Embedding

A visual connection is a powerful representation of data
flow. However, sometimes the data flow can be so obvious
or trivial that visualizing each connection only reduces
readability. As an alternative to patch cords, the Kronos
Patcher allows user to embed nodes into each other. By
dragging a node into an inlet, the contents of that node
replace the inlet.

Figure 2 shows an example, where a small subpatch is
embedded entirely within a single node. Embedded nodes
can be detached with a shake gesture.

Figure 2. Embedded nodes as a part of an expression.

3.2.1. Lambda Arrow and Captured Variables

Higher order functions, anonymous functions and closures
are essential to productive programming in the functional
paradigm[2]. While well understood in textual format,
their application to visual programming may be less ob-
vious.

The most common way to construct anonymous func-
tions in Kronos is to use the lambda arrow syntax. It is an
infix operator =>, where the left hand side defines func-
tion arguments and the right hand side defines the body. A
syntax such as x => Sqrt(x) can be read as x into square
root of x.

This lambda arrow results in an anonymous function
that takes the square root of a real number. Such a func-
tion can then be passed to a higher order function like Al-
gorithm:Map, which applies it over a vector of elements.
Similar constructs are used for most iterative tasks.

An essential aspect of anonymous functions is the con-
cept of captured variables. Traditionally, anonymous func-
tions can refer to variables out of their scope. As the visual
patch lacks the concept of variables, a slightly different
method of capturing is required.

In the visual patcher, adding inlets to a lambda ar-
row expression results in a capture. A capturing inlet is
demonstrated in Figure 3. A value from a slider and a
lambda transformation form a closure which is then ap-
plied over a vector of numbers.

Figure 3. Example of a captured inlet in an anonymous
function

3.3. Convenience Nodes

To assist in visual programming, several nodes are pro-
vided to help in situations where the desired effect is cum-
bersome to achieve with the visual interface.

3.3.1. Tuple

The Tuple node is created with a single inlet. Whenever
something is connected or embedded into the socket, an
additional socket is created automatically. A tuple data
type is built from all the connected inlets.

3.3.2. Tie

Tie nodes are used to split algebraic types[2]. Created
with the identifier Tie, it can deconstruct an algebraic type
into distinct outlets.

3.3.3. Slider

A slider node allows the user to include an interactive
control in the patch. For real time synthesis, the slider
connects to the server back end via a dedicated OSC[9]
method.

Figure 4. Slider, Tuple, Tie and a multi-output node em-
bedded in a Tie node

4. CODE GENERATION

To run the patch, the user may issue a build command.
The visual patch is then converted into a textual Kronos
program, and sent to the server. The server will perform
specialization, type inferral and reactive factorization as
described in Section 2. Finally, executable code is gener-
ated.

Various code emitters can be added to the Kronos com-
piler back end. Currently, it supports immediate compi-
lation and execution for the x86 architecture, designed

for real time sound synthesis, as well as generation of
portable code in C++. This is most useful for integration
with third party software. As a case study, the integration
of Kronos-generated C++ into a mobile iOS application
will be examined.

4.1. Case study: an iOS Application

4.1.1. Designing a Patch

First, the design of a simple resonator bank synthesizer
will be examined. The implemented filter is a typical two-
pole biquad resonator. The outline of the patch is as fol-
lows;

• Compute coefficients from frequency and bandwidth

• Implement a Direct Form II biquad filter

• Use the resonator as a component of a filter bank

A function to compute resonator coefficients is given
in Figure 5. Three argument inlets are specified: signal,
frequency and bandwidth. The signal is required to obtain
the sample rate via Reactive:Sample-Rate. Standard res-
onator coefficients b1 and b2 are computed and passed as
a tuple to the function root node Forms.

Figure 5. Computation of resonator coefficients from fre-
quency and bandwidth

The implementation of a Direct Form II biquad is shown
in Figure 6. It makes use of the previously defined coef-
ficient computation routine, embedded in a Tie node to
provide outlets for both coefficients. The filtering consists
of two stages of unit delay into multiply-accumulate and
recursion. The feed-forward section and peak gain nor-
malization follow.

Finally, a filter bank is built out of the resonator. One
slider will be used to adjust the bandwidth of all the filters,
while a frequency control is assigned to each. A pseudo-
random noise source will act as a excitation signal.

A lambda transformation is defined where the noise
signal along with the bandwidth slider are captured (see
3.2.1). These signals partially specify a signal transform,
leaving a single lambda argument, freq.

The subsequent function, Algorithm:Map, receives a
vector of frequencies from a set of sliders embedded in
a tuple node. The resulting vector is processed with the
lambda transform to obtain four channels of resonant noise.
The channels are summed by Algorithm:Reduce.

Figure 6. Direct Form II realization of a biquad resonator

4.1.2. Integration with XCode

XCode is the tool used to develop iOS applications. The
Kronos C++-emitter converts the visual patch to code, and
produces an application delegate class containing the sig-
nal processor for the iOS target. This way, Kronos can be
used to develop signal processing algorithms while the re-
fined user interface design tools of XCode kit can be fully
applied.

To provide audio I/O and user interaction, the gen-
erated app delegate is annotated with IBAction keywords
that are recognized by XCode. This allows the user inter-
face elements to be connected visually in XCode Interface
Builder. In fact, one can create a fully functional iOS ap-
plication without writing a single line of code.

Figure 7. A resonator bank controllable with sliders

5. CONCLUSION

This paper has presented the current state of Kronos, a
programming environment for musical signal processing.
Its key features were discussed, and a visual user inter-
face for comprehensive functional programming was pre-
sented. The system was applied to the task of generating
a simple mobile audio application.

Many of the capabilities of Kronos are present in var-
ious software packages. Supercollider[4] supports a wide
range of high level programming constructs. Faust[6] can
generate efficient C-code for various frameworks. Pure
Data[7] has a visual patching interface. However, none
of these are able to combine all the features. Further, the

generics and reactivity offered by Kronos are to the au-
thor’s knowledge unique in the field.

Kronos is being actively developed, with the purpose
of providing a capable set of DSP primitives in source
form along with the compiler core. Backends are an active
area of research, with more supported C++ targets on the
way. In the medium term, code generation for massively
parallel processors is a future avenue.

The Kronos environment will be released in the spring
of 2012 as an open beta. This version enforces the GPL
license for any generated code. After the beta period, the
core compiler will remain free to use for open source soft-
ware. The patching frontend and a commercially licensed
compiler will also be available.

6. REFERENCES

[1] D. Abrahams and A. Gurtovoy, C++ Template
Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond, ser. C++ In-Depth, B. Strous-
trup, Ed. Addison Wesley, 2005.

[2] P. Hudak, “Conception, evolution, and application of
functional programming languages,” ACM Comput-
ing Surveys, vol. 21, no. 3, pp. 359–411, 1989.

[3] M. Laurson, M. Kuuskankare, and V. Norilo, “An
Overview of PWGL, a Visual Programming Environ-
ment for Music,” Computer Music Journal, vol. 33,
no. 1, pp. 19–31, 2009.

[4] J. McCartney, “Rethinking the Computer Music Lan-
guage: SuperCollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[5] V. Norilo, “Introducing Kronos - A Novel Approach
to Signal Processing Languages,” in Proceedings of
the Linux Audio Conference, F. Neumann and V. Laz-
zarini, Eds. Maynooth, Ireland: NUIM, 2011, pp.
9–16.

[6] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and
semantical aspects of Faust,” Soft Computing, vol. 8,
no. 9, pp. 623–632, 2004.

[7] M. Puckette, “Pure data: another integrated computer
music environment,” in Proceedings of the 1996 In-
ternational Computer Music Conference, 1996, pp.
269–272.

[8] Z. Wan and P. Hudak, “Functional reactive program-
ming from first principles,” in Proceedings of the
ACM SIGPLAN 2000, ser. PLDI ’00. ACM, 2000,
pp. 242–252.

[9] M. Wright, A. Freed, and A. Momeni, “OpenSound
Control: State of the Art 2003,” in Proceedings of
NIME, Montreal, 2003, pp. 153–159.

	1 Introduction
	2 Language Overview
	2.1 The Functional Reactive Paradigm
	2.2 Type System
	2.3 Generic Programming

	3 Visual User Interface
	3.1 Integration of Text and Patching
	3.1.1 Patching

	3.2 Embedding
	3.2.1 Lambda Arrow and Captured Variables

	3.3 Convenience Nodes
	3.3.1 Tuple
	3.3.2 Tie
	3.3.3 Slider

	4 Code Generation
	4.1 Case study: an iOS Application
	4.1.1 Designing a Patch
	4.1.2 Integration with XCode

	5 Conclusion
	6 References

