
Introducing Kronos
A Novel Approach to Signal Processing Languages

Vesa Norilo
Centre for Music & Technology, Sibelius Academy

Pohjoinen Rautatiekatu 9
00100 Helsinki,

Finland,
vnorilo@siba.fi

Abstract

This paper presents an overview of Kronos, a soft-
ware package aimed at the development of musical
signal processing solutions. The package consists of
a programming language specification as well JIT
Compiler aimed at generating high performance ex-
ecutable code.

The Kronos programming language aims to be a
functional high level language. Combining this with
run time performance requires some unusual trade-
offs, creating a novel set of language features and
capabilities.

Case studies of several typical musical signal pro-
cessors are presented and the suitability of the lan-
guage for these applications is evaluated.

Keywords

Music, DSP, Just in Time Compiler, Functional,
Programming language

1 Introduction

Kronos aims to be a programming language and
a compiler software package ideally suited for
building any custom DSP solution that might
be required for musical purposes, either in the
studio or on the stage. The target audience
includes technologically inclined musicians as
well as musically competent engineers. This
prompts a re-evaluation of design criteria for
a programming environment, as many musi-
cians find industrial programming languages
very hostile.

On the other hand, the easily approachable
applications currently available for building mu-
sical DSP algorithms often fail to address the
requirements of a programmer, not providing
enough abstraction nor language constructs to
facilitate painless development of more compli-
cated systems.

Many software packages from Pure
Data[Puckette, 1996] to Reaktor[Nicholl,
2008] take the approach of more or less sim-
ulating a modular synthesizer. Such packages

combine a varying degree of programming lan-
guage constructs into the model, yet sticking
very closely to the metaphor of connecting
physical modules via patch cords. This de-
sign choice allows for an environment that
is readily comprehensible to anyone familiar
with its physical counterpart. However, when
more complicated programming is required,
the apparent simplicity seems to deny the
programmer the special advantages provided
by digital computers.

Kronos proposes a solution more
closely resembling packages like Supercol-
lider[McCartney, 2002] and Faust[Orlarey et
al., 2004], opting to draw inspiration from
computer science and programming language
theory. The package is fashioned as a just
in time compiler[Aycock, 2003], designed to
rapidly transform user algorithms into efficient
machine code.

This paper presents the actual language that
forms the back end on which the comprehensive
DSP development environment will be built. In
Section 2, Language Design Goals, we lay out
the criteria adopted for the language design. In
Section 3, Designing the Kronos Language, the
resulting design problems are addressed. Sec-
tion 5, Case Studies, presents several signal
processing applications written in the language,
presenting comparative observations of the ef-
ficacy our proposed solution to each case. Fi-
nally, Section 6, Conclusion, summarizes this
paper and describes future avenues of research.

2 Language Design Goals

This section presents the motivation and aspi-
rations for Kronos as a programming language.
Firstly, the requirements the language should be
able to fulfill are enumerated. Secondly, sum-
marized design criteria are derived from the re-
quirements.



2.1 Musical Solutions for
Non-engineers

Since the target audience of Kronos includes
non-engineers, the software should ideally be
easily approached. In this regard, the visually
oriented patching environments hold an advan-
tage.

A rigorously designed language offers logi-
cal cohesion and structure that is often missing
from a software package geared towards rapid
visual construction of modular ad-hoc solutions.
Consistent logic within the environment should
ease learning.

The ideal solution should be that the envi-
ronment allows the casual user to stick to the
metaphor of physical interconnected devices,
but also offers an avenue of more abstract pro-
gramming for advanced and theoretically in-
clined users.

2.2 DSP Development for Professionals

Kronos also aspires to be an environment for
professional DSP developers. This imposes two
additional design criteria: the language should
offer adequately sophisticated features, so that
more powerful programming constructs can be
used if desired. The resulting audio processors
should also exhibit excellent real time perfor-
mance.

A particularily challenging feature of a musi-
cal DSP programming is the inherent multi-rate
processing. Not all signals need equally frequent
updates. If leveraged, this fact can bring about
dramatic performance benefits. Many systems
offer a distinction between control rate and au-
dio rate signals, but preferably this forced dis-
tinction should be eliminated and a more gen-
eral solution be offered, inherent to the lan-
guage.

2.3 An Environment for Learning

If a programming language can be both be-
ginner friendly and advanced, it should ap-
peal to developers with varying levels of com-
petency. It also results in an ideal peda-
gogical tool, allowing a student to start with
relatively abstraction-free environment, resem-
bling a modular synthesizer, progressing to-
wards higher abstraction and efficient program-
ming practices.

2.4 A Future Proof Platform

Computing is undergoing a fundamental shift
in the type of hardware commonly available. It
is essential that any programming language de-
signed today must be geared towards parallel
computation and execution on a range of differ-
ing computational hardware.

2.5 Summary of the Design Criteria

Taking into account all of the above, the lan-
guage should;

• Be designed for visual syntax and graphical
user interfaces

• Provide adequate abstraction and ad-
vanced programming constructs

• Generate high performance code

• Offer a continuous learning curve from be-
ginner to professional

• Be designed to be parallelizable and
portable

3 Designing the Kronos Language

This section will make a brief case for the design
choices adapted in Kronos.

3.1 Functional Programming

The functional programming paradigm[Hudak,
1989] is the founding principle in Kronos. Si-
multaneously fulfilling a number of our criteria,
we believe it to be the ideal choice.

Compared to procedural languages, func-
tional languages place less emphasis on the
order of statements in the program source.
Functional programs are essentially signal flow
graphs, formed of processing nodes connected
by data flow.

Graphs are straightforward to present visu-
ally. The nodes and data flows in such trees are
also something most music technologists tend to
understand well. Much of their work is based on
making extensive audio flow graphs.

Functional programming also offers exten-
sive abstraction and sophisticated programming
constructs. These features should appeal to ad-
vanced programmers.

Further, the data flow metaphor of program-
ming is ideally suited for parallel processing,
as the language can be formally analyzed and



transformed while retaining algorithmic equiva-
lence. This is much harder to do for a procedu-
ral language that may rely on a very particular
order of execution and hidden dependencies.

Taken together, these factors make a strong
case for functional programming for the pur-
poses of Kronos and recommend its adoption.
However, the functional paradigm is quite un-
like what most programmers are used to. The
following sections present some key differences
from typical procedural languages.

3.1.1 No state

Functional programs have no state. The output
of a program fragment is uniquely determined
by its input, regardless of the context in which
the fragment is run. Several further features
and constraints emerge from this fundamental
property.

3.1.2 Bindings Instead of Variables

Since the language is based on data flow instead
of a series of actions, there is no concept of a
changeable variable. Functional operators can
only provide output from input, not change the
state of any external entity.

However, symbols still remain useful. They
can be used to bind expressions, making code
easier to write and read.

3.1.3 Higher Order Functions Instead
of Loops

Since the language has no variables, traditional
loops are not possible either, as they rely on a
loop iteration variable. To accomplish iterative
behavior, functional languages employ recursion
and higher order functions[Kemp, 2007]. This
approach has the added benefit of being eas-
ier to depict visually than traditional loop con-
structs based on textual languages – notoriously
hard to describe in a patching environment.

As an example, two higher order functions
along with example replies are presented in List-
ing 1.

Listing 1: Higher order functions with example
replies

/* Apply the mapping function Sqrt to all elements of a list

*/
Algorithm:Map(Sqrt 1 2 3 4 5) => (1 1.41421 1.73205 2 2.23607)
/* Combine all the elements of a list using a folding

function, Add */
Algorithm:Fold(Add 1 2 3 4 5) => 15

3.1.4 Polymorphism Instead of Flow
Control

A typical procedural program contains a con-
siderable amount of branches and logic state-

ments. While logic statements are part of func-
tional programming, flow control often happens
via polymorphism. Several different forms can
be defined for a single function, allowing the
compiler to pick an appropriate form based on
the argument type.

Polymorphism and form selection is also the
mechanism that drives iterative higher order
functions. The implementation for one such
function, Fold, is presented in Listing 2. Fold
takes as an argument a folding function and a
list of numbers.

While the list can be split into two parts, x
and xs, the second form is utilized. This form
recurs with xs as the list argument. This pro-
cess continues, element by element, until the list
only contains a single unsplittable element. In
that boundary case the first form of the function
is selected and the recursion terminates.

Listing 2: Fold, a higher order function for reduc-
ing lists with example replies.

Fold(folding-function x)
{

Fold = x
}

Fold(folding-function x xs)
{

Fold = Eval(folding-function x Fold(folding-function xs))
}

/* Add several numbers */
Fold(Add 1 2 3 4) => 10
/* Multiply several numbers */
Fold(Mul 5 6 10) => 300

3.2 Generic Programming and
Specialization

3.2.1 Generics for Flexibility

Let us examine a scenario where a sum of sev-
eral signals in differing formats is needed. Let
us assume that we have defined data types for
mono and stereo samples. In Kronos, we could
easily define a summation node that provides
mono output when all its inputs are mono, and
stereo when at least one input is stereo.

An example implementation is provided in
Listing 3. The listing relies on the user defining
semantic context by providing types, Mono and
Stereo, and providing a Coerce method that can
upgrade a Mono input to a Stereo output.

Listing 3: User-defined coercion of mono into
stereo

Type Mono
Package Mono{

Cons(sample) /* wrap a sample in type context ‘Mono’ */
{Cons = Make(:Mono sample)}

Get-Sample(sample) /* retrieve a sample from ‘Mono’
context */

{Get-Sample = Break(:Mono sample)}
}



Type Stereo
Package Stereo{
Cons(sample) /* wrap a sample in type context ‘Stereo’ */
{Cons = Make(:Stereo sample)}

L/R(sample) /* provide accessors to assumed Left and Right
channels */

{(L R) = Break(:Stereo sample)}
}

Add(a b)
{
/* How to add ‘Mono’ samples */
Add = Mono:Cons(Mono:Get-Sample(a) + Mono:Get-Sample(b))
/* How to add ‘Stereo’ samples */
Add = Stereo:Cons(Stereo:L(a) + Stereo:L(b) Stereo:R(a) +

Stereo:R(b))
}

Coerce(desired-type smp)
{
/* Provide type upgrade from mono to stereo by duplicating

channels */
Coerce = When(
Type-Of(desired-type) == Stereo
Coerce = Stereo:Cons(

Mono:Get-Sample(smp) Mono:Get-Sample(smp)))
}

/* Provide a mixing function to sum a number of channels */
Mix-Bus(ch)
{
Mix-Bus = ch

}

Mix-Bus(ch chs)
{
Mix-Bus = ch + Recur(chs)

}

Note that the function Mix-Bus in Listing 3
needs to know very little about the type of data
passed to it. It is prepared to process a list of
channels via recursion, but the only other con-
straint is that a summation operator must exist
that accepts the kind of data passed to it.

We define summation for two mono signals
and two stereo signals. When no appropriate
form of Add can bedirectly located, as will hap-
pen when adding a mono and a stereo signal,
the system-provided Add -function attempts to
use Coerce to upgrade one of the arguments.
Since we have provided a coercion path from
mono to stereo, the result is that when adding
mono and stereo signals, the mono signal gets
upconverted to stereo by Coerce followed by a
stereo summation.

The great strength of generics is that func-
tions do not explicitly need to be adapted to
a variety of incoming types. If the building
blocks or primitives of which the function is
constructed can handle a type, so can the func-
tion. If the complete set of arithmetic and log-
ical primitives would be implemented for the
types Mono and Stereo, then the vast majority
of functions, written without any knowledge of
these particular types, would be able to trans-
parently handle them.

Generic processing shows great promise once
all the possible type permutations present in
music DSP are considered. Single or double

precision samples? Mono, stereo or multichan-
nel? Real- or complex-valued? With properly
designed types, a singular implementation of a
signal processor can automatically handle any
combination of these.

3.2.2 Type Determinism for
Performance

Generic programming offers great expressive-
ness and power to the programmer. However,
typeless or dynamically typed languages have a
reputation for producing slower code than stat-
ically typed languages, mostly due to the exten-
sive amount of run time type information and
reflection required to make them work.

To bring the performance on par with a static
language, Kronos adopts a rigorous constraint.
The output data type of a processing node may
only depend on the input data type. This is the
principle of type determinism.

As demonstrated in Listing 3, Kronos offers
extensive freedom in specifying what is the re-
sult type of a function given a certain argument
type. However, what is prohibited, based on
type determinism, is selecting the result type of
a function based on the argument data itself.

Thus it is impossible to define a mixing mod-
ule that compares two stereo channels, provid-
ing a mono output when they are identical and
keeping the stereo information when necessary.
That is because this decision would be based on
data itself, not the type of said data.

While type determinism could be a crippling
deficit in a general programming language, it is
less so in the context of music DSP. The ex-
ample above is quite contrived, and regardless,
most musical programming environments simi-
larily prevent changes to channel configuration
and routing on the fly.

Adopting the type determinism constraint al-
lows the compiler to statically analyze the entire
data flow of the program given just the data
type of the initial, caller-provided input. The
rationale for this is that a signal processing algo-
rithm is typically used to process large streams
of statically typed data. The result of a single
analysis pass can then be reused thousands or
millions of times.

3.3 Digital Signal Processing and State

A point must be made about the exclusion of
stateful programs, explained in Section 3.1.1.
This seems at odds with the estabilished body
of DSP algorithms, many of which depend on



state or signal memory. Examples of stateful
processes are easy to come by. They include
processors that clearly have memory, such as
echo and reverberation effects, as well as those
with recursions like digital IIR filters.

As a functional language, Kronos doesn’t al-
low direct state manipulation. However, given
the signal processing focus, operations that hide
stateful operations are provided to the program-
mer. Delay lines are provided as operators; they
function exactly like the common mathemati-
cal operators. A similar approach is taken by
Faust, where delay is provided as a built-in op-
erator and recursion is an integrated language
construct.

With a native delay operator it is equally sim-
ple to delay a signal as it is, for example, to
take its square root. Further, the parser and
compiler support recursive connections through
these operators. The state-hiding operators
aim to provide all the necessary stateful oper-
ations required to implement the vast majority
of known DSP algorithms.

4 Multirate Programming

One of the most critical problems in many signal
processing systems is the handling of distinct
signal rates. A signal flow in a typical DSP
algorithm is conceptually divided into several
sections.

One of them might be the set of control
signals generated by an user interface or an
external control source via a protocol like
OSC[Wright et al., 2003]. These signals are
mostly stable, changing occasionally when the
user adjusts a slider or turns a knob.

Another section could be the internal mod-
ulation structure, comprising of low frequency
oscillators and envelopes. These signals typi-
cally update more frequently than the control
signals, but do not need to reach the bandwidth
required by audio signals.

Therefore, it is not at all contrived to picture
a system containing three different signal fami-
lies with highly diverging update frequencies.

The naive solution would be to adopt the
highest update frequency required for the sys-
tem and run the entire signal flow graph at that
frequency. In practice, this is not acceptable
for performance reasons. Control signal opti-
mization is essential for improving the run time
performance of audio algorithms.

Another possibility is to leave the signal rate

specification to the programmer. This is the
case for any programming language not specif-
ically designed for audio. As the programmer
has full control and responsibility over the exe-
cution path of his program, he must also explic-
itly state when and how often certain computa-
tions need to be performed and where to store
those results that may be reused.

Thirdly, the paradigm of functional reactive
programming[Nordlander, 1999] can be relied
on to automatically determine signal update
rates.

4.1 The Functional Reactive Paradigm

The constraints imposed by functional program-
ming also turn out to facilitate automatic signal
rate optimization.

Since the output of a functional program frag-
ment depends on nothing but its input, it is
obvious that the fragment needs to be exe-
cuted only when the input changes. Otherwise,
the previously computed output can be reused,
sparing resources.

This realization leads to the functional re-
active paradigm[Nordlander, 1999]. A reactive
system is essentially a data flow graph with in-
puts and outputs. Reactions – responses by
outputs to inputs – are inferred, since an out-
put must be recomputed whenever any input
changes that is directly reachable by following
the data flow upstream.

4.1.1 Reactive Programming in Kronos

Reactive inputs in Kronos are called springs.
They represent the start of the data flow and
a point at which the Kronos program receives
input from the outside world. Reactive outputs
are called sinks, representing the terminals of
data flow. The system can deduce which sinks
receive an update when a particular input is up-
dated.

Springs and Priority
Reactive programming for audio has some

special features that need to be considered. Let
us examine the delay operators presented in Sec-
tion 3.3. Since the delays are specified in com-
putational frames, the delay time of a frame
becomes the inter-update interval of whatever
reactive inputs the delay is connected to. It is
therefore necessary to be able to control this
update interval precisely.

A digital low pass filter is shown in Listing 4.
It is connected to two springs, an audio signal



High Low

Medium

Figure 1: A reactive graph demonstrating spring
priority. Processing nodes are color coded according
to which spring triggers their update.

provided by the argument x0 and an user inter-
face control signal via OSC[Wright et al., 2003].
The basic form of reactive processing laid out
above would indicate that the unit delays up-
date whenever either the audio input or the user
interface is updated.

However, to maintain a steady sample rate,
we do not want the user interface to force up-
dates on the unit delay. The output of the filter,
as well as the unit delay node, should only react
to the audio rate signal produced by the audio
signal input.

Listing 4: A Low pass filter controlled by OSC

Lowpass(x0)
{
cutoff = IO:OSC-Input("cutoff")
y1 = z-1(’0 y0)
y0 = x0 + cutoff * (y1 - x0)
Lowpass = y0

}

As a solution, springs can be given priorities.
Whenever there is a graph junction where a
node reacts to two springs, the spring priorities
are compared. If they differ, an intermediate
variable is placed at the junction and any reac-
tion to the lower priority spring is supressed for
all nodes and sinks downstream of the junction.

When the springs have equal priority, neither
is supressed and both reactions propagate down
the data flow. Figure 1 illustrates the reactiv-
ity inferral procedure of a graph with several
springs of differing priorities.

Typically, priorities are assigned according to
the expected update rate so that the highest

Audio-Signal

OSC
mod-depth Control-Clock

OSC
mod-freq

LFOCrt:pow

Crt:pow

*

+ 440

Bandpass-Coefs

Biquad-Filter

Figure 2: A practical example of a system con-
sisting of user interface signals, coarse control rate
processing and audio rate processing.

update rate carries the highest priority.

In the example shown in Listing 5 and Figure
2, an user interface signal adjusts an LFO that
in turn controls the corner frequency of a band
pass filter.

There are two junctions in the graph where
supression occurs. Firstly, the user interface
signal is terminated before the LFO computa-
tion, since the LFO control clock overrides the
user interface. Secondly, the audio spring pri-
ority again overrides the control rate priority.
The LFO updates propagate into the coefficient
computations of the bandpass filter, but do not
reach the unit delay nodes or the audio output.

Listing 5: Mixing user interface, control rate and
audio rate signals

Biquad-Filter(x0 a0 a1 a2 b1 b2)
{

y1 = z-1(’0 y0) y2 = z-1(’0 y1) x1 = z-1(’0 x0) x2 = z-1(’0
x1)

y0 = a0 * x0 + a1 * x1 + a2 * x2 - b1 * y1 - b2 * y2
}

Bandpass-Coefs(freq r amp)
{

(a0 a1 a2) = (Sqrt(r) 0 Neg(Sqrt(r)))
(b1 b2) = (Neg(2 * Crt:cos(freq) * r) r * r)
Bandpass-Coefs = (a0 a1 a2 b1 b2)

}

Vibrato-Reson(sig)
{

Use IO
freq = OSC-Input("freq")
mod-depth = Crt:pow(OSC-Input("mod-depth") 3)
mod-freq = Crt:pow(OSC-Input("mod-freq") 4)

Vibrato-Reson = Biquad-Filter(sig
Bandpass-Coefs(freq + mod-depth * LFO(mod-freq) 0.95

0.05))
}



4.1.2 Explicit Reaction Supression

It is to be expected that the priority system by
itself is not sufficient. Suppose we would like to
build an envelope follower that converts the en-
velope of an audio signal into an OSC[Wright et
al., 2003] control signal with a lower frequency.
Automatic inferral would never allow the lower
priority control rate spring to own the OSC out-
put; therefore a manual way to override supres-
sion is required.

This introduces a further scheduling compli-
cation. In the case of automatic supression, it is
guaranteed that nodes reacting to lower prior-
ity springs can never depend on the results of a
higher priority fragment in the signal flow. This
enables the host system to schedule spring up-
dates accordingly so that lower priority springs
fire first, followed by higher priority springs.

When a priority inversal occurs, such that
a lower priority program fragment is below a
higher priority fragment in the signal flow, the
dependency rule stated above no longer holds.
An undesired unit delay is introduced at the
graph junction. To overcome this, the system
must split the lower priority spring update into
two sections, one of which is evaluated before
the suppressed spring, while the latter section
is triggered only after the supressed spring has
been updated.

Priority inversal is still a topic of active re-
search, as there are several possible implemen-
tations, each with its own problems and bene-
fits.

5 Case Studies

5.1 Reverberation

5.1.1 Multi-tap delay

As a precursor to more sophisticated reverber-
ation algorithms, multi-tap delay offers a good
showcase for the generic programming capabil-
ities of Kronos.

Listing 6: Multi-tap delay

Multi-Tap(sig delays)
{
Use Algorithm
Multi-Tap = Reduce(Add Map(Curry(Delay sig) delays))

}

The processor described in Listing 6 shows a
concise formulation of a highly adaptable bank
of delay lines. Higher order functions Reduce
and Map are utilized in place of a loop to pro-
duce a number of delay lines without duplicat-
ing delay statements.

Another higher order function, Curry, is used
to construct a new mapping function. Curry at-
taches an argument to a function. In this con-
text, the single signal sig shall be fed to all the
delay lines. Curry is used to construct a new de-
lay function that is fixed to receive the curried
signal.

This curried function is then used as a map-
ping function to the list of delay line lengths, re-
sulting in a bank of delay lines, all of them being
fed by the same signal source. The outputs of
the delay lines are summed, using Reduce(Add
...). It should be noted that the routine pro-
duces an arbitrary number of delay lines, deter-
mined by the length of the list passed as the
delays argument.

5.1.2 Schroeder Reverberator

It is quite easy to expand the multi-tap de-
lay into a proper reverberator. Listing 7
implements the classic Schroeder reverbera-
tion[Schroeder, 1969]. Contrasted to the multi-
tap delay, a form of the polymorphic Delay
function that features feedback is utilized.

Listing 7: Classic Schroeder Reverberator

Feedback-for-RT60(rt60 delay)
{ Feedback-for-RT60 = Crt:pow(#0.001 delay / rt60) }

Basic(sig rt60)
{

Use Algorithm
allpass-params = ((0.7 #221) (0.7 #75))
delay-times = (#1310 #1636 #1813 #1927)

feedbacks = Map(
Curry(Feedback-for-RT60 rt60) delay-times)

comb-section = Reduce(Add
Zip-With(

Curry(Delay sig) feedbacks delay-times))

Basic = Cascade(Allpass-Comb comb-section allpass-params)
}

A third high order function, Cascade, is
presented, providing means to route a signal
through a number of similar stages with differ-
ing parameters. Here, the number of allpass
comb filters can be controlled by adding or re-
moving entries to the allpass-params list.

5.2 Equalization

In this example, a multi-band parametric equal-
izer is presented. For brevity, the implementa-
tion of the function Biquad-Filter is not shown.
It can be found in Listing 5. The coefficient
computation formula is from the widely used
Audio EQ Cookbook[Bristow-Johnson, 2011].

Listing 8: Multiband Parametric Equalizer

Package EQ{
Parametric-Coefs(freq dBgain q)
{



A = Sqrt(Crt:pow(10 dbGain / 40))
w0 = 2 * Pi * freq
alpha = Crt:sin(w0) / (2 * q)

(a0 a1 a2) = ((1 + alpha * A) (-2 * Crt:cos(w0)) (1 -
alpha * A))

(b0 b1 b2) = ((1 + alpha / A) (-2 * Crt:cos(w0)) (1 -
alpha / A))

Parametric-Coefs = ((a0 / b0) (a1 / b0) (a2 / b0) (b1 /
b0) (b2 / b0))

}

Parametric(sig freqs dBgains qs)
{
Parametric = Cascade(Biquad-Filter
Zip3-With(Parametric-Coefs freqs dBgains qs))

}
}

This parametric EQ features an arbitrary
number of bands, depending only on the size of
the lists freqs, dBgains and qs. For this example
to work, these list lengths must match.

6 Conclusion

This paper presented Kronos, a programming
language and a compiler suite designed for musi-
cal DSP. Many of the principles discussed could
be applied to any signal processing platform.

The language is capable of logically and ef-
ficiently representing various signal processing
algorithms, as demonstrated in Section 5. As
algorithm complexity grows, utilization of ad-
vanced language features becomes more advan-
tageous.

While the language specification is practically
complete, a lot of implementation work still re-
mains. Previous work by the author on autovec-
torization and parallelization[Norilo and Laur-
son, 2009] should be integrated with the new
compiler. Emphasis should be placed on paral-
lel processing in the low latency case; a partic-
ularily interesting and challenging problem.

In addition to the current JIT Compiler for
x86 computers, backends should be added for
other compile targets. Being able to generate
C code would greatly facilitate using the sys-
tem for generating signal processing modules
to be integrated into another software package.
Targeting stream processors and GPUs is an
equally interesting opportunity.

Once sufficiently mature, Kronos will be re-
leased as a C-callable library. There is also
a command line interface. Various licens-
ing options, including a dual commercial/GPL
model are being investigated. A development
of PWGLSynth[Laurson et al., 2009] based on
Kronos is also planned. Meanwhile, progress
and releases can be tracked on the Kronos web-
site[Norilo, 2011].

References

J Aycock. 2003. A brief history of just-in-
time. ACM Computing Surveys, 35(2):97–
113.

Robert Bristow-Johnson. 2011. Audio EQ
Cookbook (http://musicdsp.org/files/Audio-
EQ-Cookbook.txt).

Paul Hudak. 1989. Conception, evolu-
tion, and application of functional program-
ming languages. ACM Computing Surveys,
21(3):359–411.

Colin John Morris Kemp. 2007. Theoreti-
cal Foundations for Practical Totally Func-
tional Programming. Ph.D. thesis, University
of Queensland.

Mikael Laurson, Mika Kuuskankare, and Vesa
Norilo. 2009. An Overview of PWGL, a Vi-
sual Programming Environment for Music.
Computer Music Journal, 33(1):19–31.

James McCartney. 2002. Rethinking the
Computer Music Language: SuperCollider.
Computer Music Journal, 26(4):61–68.

James Nicholl. 2008. Developing applications
in a patch language - A Reaktor Perspective.
pages 1–23.

Johan Nordlander. 1999. Reactive Ob-
jects and Functional Programming. Ph.D.
thesis, Chalmers University of Technology,
Götebord, Sweden.

Vesa Norilo and Mikael Laurson. 2009. Kro-
nos - a Vectorizing Compiler for Music DSP.
In Proceedings of DAFx, pages 180–183.

Vesa Norilo. 2011. Kronos Web Resource
(http://kronos.vesanorilo.com).

Y Orlarey, D Fober, and S Letz. 2004. Syn-
tactical and semantical aspects of Faust. Soft
Computing, 8(9):623–632.

M Puckette. 1996. Pure data: another inte-
grated computer music environment. In Pro-
ceedings of the 1996 International Computer
Music Conference, pages 269–272.

M R Schroeder. 1969. Digital Simulation of
Sound Transmission in Reverberant Spaces.
Journal of the Acoustical Society of America,
45(1):303.

Matthew Wright, Adrian Freed, and Ali Mo-
meni. 2003. OpenSound Control: State of the
Art 2003. Time, pages 153–159.


