
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

VISUALIZATION OF SIGNALS AND ALGORITHMS IN KRONOS

Vesa Norilo

Centre for Music and Technology
Sibelius Academy
Helsinki, Finland

vnorilo@siba.fi

ABSTRACT

Kronos is a visual-oriented programming language and a compiler
aimed at musical signal processing tasks. Its distinctive feature is
the support for functional programming idioms like closures and
higher order functions in the context of high performance real time
DSP. This paper examines the visual aspect of the system. The
programming user interface is discussed, along with a scheme for
building custom data visualization algorithms inside the system.

1. INTRODUCTION

Much research effort has been spent to pursue visual programming
of audio algorithms. Signal flows are well suited for graphical
representation, and graphical user interfaces for programming tend
to lower the barrier to entry for non-traditional programmers.

On the other hand, data visualization is key in various audio
tasks. Sound engineers rely on expansive instrumentation to aid
their audio work. Seeing audio signals is invaluable for algorithm
developers. Data visualization can be used creatively for artistic
purposes.

Kronos is an emerging programming language and a compiler,
designed from ground up to realize audio signal processors from
a visual representation. The core technology has been previously
presented[1], and the focus of this paper is the visual aspect – de-
signing algorithms in the visual domain.

The rest of this paper is organized as follows: In Section 2,
Advancing Visual Progiramming, the state of art in visual pro-
gramming is described, along with novel contributions. Section 3,
Graphics from Signals, presents a visual domain language within
Kronos that is used to build custom data visualization solutions.
Several examples of signal visualization are given in Section 4,
Case Studies, before the Conclusions presented in Section 5.

2. ADVANCING VISUAL PROGRAMMING

2.1. A Brief Survey of the Field

Visual programming of musical applications has been examined in
depth. A de facto standard in custom signal processors seems to be
the commercial Max/MSP by Cycling7́4 and its open source rela-
tive, Pure Data[2]. The success of these systems is indicative of the
demand for an easily approachable, visual programming platform
for signal processors.

Until recently, these systems have not supported truly com-
prehensive customization of signal processors, mostly due to the
fact that they operate on buffered signals and the associated lack
of low-delay recursion. Traditionally, for such customization, a

C-language extension to the system would have to be made, ren-
dering the main systems little more than an extensive patching and
routing tools for pre-made modules. Such tools are invaluable, and
this should be taken as an observation rather than a criticism.

Max/MSP has recently gained the gen-addon, which enables
visual programming of signal processors on a very detailed level.
However, the programming model differs from the main environ-
ment, essentially representing a distinct programming language.
At the moment, the appeal of gen to the community is still hard to
gauge, but its inclusion indicates that per-sample processing was
desirable for the authors.

Finally, abstraction is fairly absent in both Max/MSP and PD.
It can be argued that this can be a good thing, as it may lower
the learning curve for beginners. However, it also enforces a cap
on programmer productivity as her skills increase. The author be-
lieves this to be key in advancing visual programming – how to
leverage abstraction, make it seem natural in the visual represen-
tation, while remaining approachable to non-programmers.

The lack of abstraction in Max/MSP and related platforms
also seems be a wider concern. Odot[3] is a project integrating
instance-based object oriented techniques into Max/MSP, with po-
tential to improve programming efficiency. However, Odot is not
accessible to gen, rendering it less useful for aiding low-level sig-
nal processing tasks.

Similar limitations and distinctions are present in PWGL[4],
the origin of this research. The main system consists of a Lisp-
based patching environment, but for audio processing, a separate,
less capable domain language called PWGLSynth was implemented
for performance reasons.

2.2. Features of Kronos

The aim of Kronos is to introduce a visual language that is capable
of extremely low level programming and high performance, even
when abstract high level constructs are used. Further, these ab-
stractions should be suited to visual representation, which often
suffers from apparent one-to-one relationship with physical ob-
jects. This subsection briefly describes the core technology. For an
extended discussion, the reader is referred to previous publications[1].

Kronos is realized as a client-server architecture. The backend
features the compiler and I/O, such as MIDI and audio. The patch-
ing frontend is implemented in Microsoft Silverlight, and connects
to the backend over OSC[5]. Visual patches are translated into tex-
tual Kronos programs and compiled on the fly.

The basic appearance of the Kronos patcher should be famil-
iar to most readers. Processing nodes are inserted on a canvas
and connected via patch cords. A special feature is node embed-
ding, allowing the user to dock nodes inside other nodes, where

DAFX-1

http://mute.siba.fi
mailto:vnorilo@siba.fi

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

normally a patch cord connection point would reside. This can
greatly reduce visual clutter.

Users are free to type freeform text into nodes. This facil-
itates the entry of constants, literals and compound expressions.
Freeform entry is aided by an interactive search box, which can
be used like a searchable menu of built-in modules by beginners.
Example nodes are shown in Figure 1.

Figure 1: Example nodes.

2.2.1. Functional programming

For the programming model, Kronos taps into the theory of func-
tional programming[6]. A key feature of functional languages is
that functions can be used as data. In Kronos, a reverb algorithm
could be designed to receive a damping filter from an inlet, subse-
quently applying it to the internal feedback paths. A more typical
example would be algorithmic routing; higher order functions can
configure parallel or serial routings based on a I/O configuration
using an user-supplied processor.

An example of a higher order function is given in Figure 2,
where Algorithm:Map receives an anonymous function, x into Square
root of x, and applies that transformation over a vector connected
to the second inlet. The transformation could equally well be and
audio process such as a filter.

Figure 2: A simple application of functional programming.

2.2.2. Types and Polymorphism

Kronos functions are generic. That means that both the functions
in the built-in library and those specified by the user can operate
on a wide range of signals. It is possible to specify a processor that
can accept monophonic or multichannel signals, single or double
precision, even real-valued or complex – along with any combina-
tion of these.

It should be noted that during execution, Kronos programs are
statically typed. This is for performance reasons; it allows for the
entire program to run deterministically and requires no dynamic
memory allocation. This restriction extends to functions; their out-
put type must be uniquely determined by the input type. This rigid-
ity is what allows the highly abstract, generic language to perform
efficiently.

The type system emergently provides a closure mechanism.
New functions can be constructed on the go, with captured vari-
ables or more appropriately, captured signals. Such closures are
particularily useful when leveraged in conjunction with higher or-
der functions. A large closure is displayed in Figure 6, the final
case study of this paper.

2.2.3. Reactivity

Kronos specifies a synchronously updating graph, requiring no
manual bangs or scheduling aids. Multirate functionality is of-
fered by the means of clock sources, functions that cause the patch
downstream from them to update at a certain rate. Such sources
can be anything from oscillators, audio file players and MIDI in-
puts to user interface sliders. Computations are only performed
when their clock source ticks, for maximum efficiency.

2.2.4. Interoperability

The default mechanism for running Kronos patches is immediate
execution. Patches are translated into performant, native x86 ma-
chine code upon playback, resulting in efficient utilization of com-
puting power.

However, it is often desirable to be able to integrate the patches
into third party code. For this, the backend is also capable of gen-
erating C++ code from the user patch. The resulting code can then
be included in an audio plugin or a standalone application without
introducing any dependencies to the compiler.

The Kronos environment can thus be used to prototype and
test an audio processor interactively in the immediate mode, sub-
sequently exporting it to C++ code.

3. GRAPHICS FROM SIGNALS

With the recent research emphasis on the visual user interface, it
is natural to focus on the field of signal processing known as data
visualization. A data visualizer generates graphics from data. In
the case of audio signals, it can be envisioned as a signal processor
that accepts audio signals and outputs a graphical representation.

3.1. Signal Routing and Division of Labor

As the Kronos core technology is agnostic to I/O, graphics appear
as just another signal to the backend. Each update of an audio
signal carries just a single sample of data, but the updates happen
very rapidly. A frame of graphics, on the other hand, contains a lot
of data, updated at a lower rate.Thus, audio signals are narrow and
fast, while graphics are wide and slow. Generating graphics from
audio thus often implies signal rate decimation or buffering.

In modern systems, it makes sense to offload graphics to a
dedicated accelerator. The desired output format from the backend
is thus a minimum set of parameters and an annotation of how
they should be drawn. For example, a graphical polygon should
be expressed as a polygon tag, followed by the list of vertices that
define it. A graphics subsystem receiving this data is then able to
realize the graphics.

A general principle of an audio visualizer is thus a signal pro-
cessor that inputs an audio signal, outputting a set of vertices and
colors.

3.2. The Metadata Protocol

It turns out that the extensible type system in Kronos is also suited
for encoding graphics. Drawing annotations can be encoded as
user types, containing vertex lists, colors, coordinates and sizes.
Being algebraic[7], Kronos types are hierarchical, just like a typi-
cal visual tree in a graphics engine.

The visual tree is therefore neatly created by the type inferral
process Kronos applies to the patch. This static type defines the

DAFX-2

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

hierarchy of the visual tree, while the instances of the type that
stream in from the backend represent graphical frames. Appro-
priate portions of the incoming stream must thus be routed to the
correct nodes of the visual tree.

A metadata protocol is defined for this purpose. Kronos is able
to encode its internal types in XML format, where each algebraic
junction of the type has a corresponding XML tag. The backend
will transmit this XML-encoded type information to the graphics
subsystem when the patch is compiled.

The current implementation of the graphics subsystem uses
the XML serialization engine in Silverlight to obtain a visual tree
decoder directly from the XML description, when all user types
used in the Kronos code have a corresponding Silverlight imple-
mentation. The decoder is capable of both constructing the visual
tree and relaying data to it from the update stream.

As an optimization, invariant parameters are encoded in the
metadata and omitted from the per-frame updates.

3.3. A Domain-speficic Language

The graphics language in Kronos is defined by the graphics prim-
itives type set and their associated constructors. The visual tree is
defined entirely by the hierarchical type constructed by the patch
as the result of type constructors and compositors of various cate-
gories.

3.3.1. Atoms

The atoms of which shapes are assembled consist of a Point and a
Size in 2d space, as well as a Color.

3.3.2. Shapes

These types define the primitives of which graphics are assembled.
Rectangle and Ellipse are common shapes. For more general tasks,
Triangle-Strip and Triangle-Fan are provided for efficient convex
polygons.

3.3.3. Brushes

A brush node can apply a Fill or a Stroke color to all of its hierar-
chical children. The effects of these nodes carry over descendants,
so that the nearest ancestor takes precedence.

3.3.4. Transforms

These nodes provide transformations in 2d space. Translate, Ro-
tate and Scale are provided. The transformations apply to all their
hierarchical children, and can be stacked. Transforms are useful
especially when assembling animated visualization.

3.4. Limitations

The fundamental limitation of the graphics subsystem derives from
the Kronos type system. During execution, Kronos programs are
statically typed. Since the structure of the visual tree is defined by
a type, it must also be static during processing. Therefore, nodes
can’t be added or removed from the visual tree without rebuilding
the patch. Likewise, a Rectangle cannot dynamically change into
an Ellipse or similar.

This limitation is not fatal in a data visualization solution. In
Section 4, the capabilities of the language in audio signal metering
are demonstrated.

4. CASE STUDIES

4.1. Peak Meter

As the first example, the simplest possible peak meter is shown in
Figure 3. An audio file player acts as a signal source. To obtain
peak levels, two stages of decimation are performed. The first mul-
tiplexing stage, Reactive:Mux, buffers 16 samples between clock
updates.

Subsequently, the maximum value in the buffer is obtained by
reducing the buffer with Max. To further bring down the signal
rate, this lower-rate peak value is again buffered and reduced, re-
sulting in a total decimation factor of 256. While thiscould be done
in a single stage, factoring it in two yields – in principle – better
low-latency performance due to amortization.

The resulting peak signal is converted into graphics by simply
connecting it to the width of a rectangle, resulting in a momentary
positive peak meter.

Figure 3: A simple positive peak meter.

4.2. Wave Scanner

As a more advanced example, a scanning oscilloscope is presented.
The visualization function is shown in Figure 4.

Figure 4: Converting an audio signal into waveform graphics.

DAFX-3

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

The output plot of the function is shown in Figure 5. Initially,
the signal is buffered as in 4.1. However, this time reduction is per-
formed by an anonymous function that obtains both the minimum
and maximum sample found in the buffer.

These min-max pairs are fed into a ring buffer, which in turn
outputs its entire contents along with the current write head posi-
tion. The update rate is then decimated to reduce computational
load. Finally, an evenly spaced, invariant X-coordinate list is gen-
erated with Series:Count. Each element is duplicated, since both
minimum and maximum peaks should have a X-coordinate.

A vector of points is generated from the contents of the ring
buffer by Algorithm:Zip-With. This function combines the ring
buffer content, flattened so that it contains the maximum and min-
imum peaks in an alternating sequence, with the X-coordinate vec-
tor. A zipping function that constructs a Plot:Point from the coor-
dinates is employed, resulting in a list of coordinates.

This list is then used to construct a triangle strip which, when
plotted, appears as a polygon in the shape of a waveform. Finally,
a rectangular cursor is overlaid, placed to indicate the current write
position in the ring buffer.

Figure 5: A sample waveform image generated by the visualizer.

4.3. Advanced Visualization

In the final example, a slightly less conventional visualization is
presented. While not very useful as such, the example is conceived
to demonstrate the power of higher order functions in visualiza-
tion.

The audio portion of the patch is a resonator on noise, modu-
lated by a slowly changing random signal. This results in a simple
wind effect. The wind is visualized graphically by a fractal tree.

At the heart of the fractal is a closure that constructs two trans-
lated, rotated, scaled copies of any graphics fed into it, adding
a root segment. Algorithm:Iterate repeats this closure six times,
starting from a simple rectangular segment. As a result, the plot
displays a segmented tree, bisecting at each junction.

The rotation and scaling parameters are set by several user in-
terface sliders and captured within the closure. By modulating
both rotation parameters with the signal that controls the resonator
pitch, the tree is made to bend in time with the artificial wind.

The patch is surprisingly compact, utilizing the power of higher
order functions and recursion to generate an extensive data set
from humble origins and a limited set of operations.

5. CONCLUSIONS

This paper focused on the visual aspect of Kronos. Although
mainly a signal processing language, this paper aims to demon-
strate that Kronos is flexible enough to provide for user-designed
data visualization.

Specifying data visualizers may be out of reach for begin-
ner programmers, but intermediate and advanced users should find
transforming signals into graphics seamless and easy. The Kronos
type system provides a natural mechanism for constructing the hi-
erarchical visual tree used as the basis of plotting.

Figure 6: A fractal tree deformed by a control signal shared with a
resonator.

The visualizers themselves demonstrate several unique fea-
tures of the Kronos language. It offers abstraction and program-
ming constructs rarely found in visual languages for signal proces-
sors, such as higher order functions and closures[6]. Their appli-
cation to audio-only processing has been discussed previously[1].

Kronos is to enter open beta in the Spring of 2012, available
for Windows and Mac OS X. Meanwhile, videos of the visualiza-
tion patches can be viewed at http://www.youtube.com/user/vnorilo.

6. REFERENCES

[1] Vesa Norilo, “Introducing Kronos - A Novel Approach to Sig-
nal Processing Languages,” in Proceedings of the Linux Au-
dio Conference, Frank Neumann and Victor Lazzarini, Eds.,
Maynooth, Ireland, 2011, pp. 9–16, NUIM.

[2] M Puckette, “Pure data: another integrated computer music
environment,” in Proceedings of the 1996 International Com-
puter Music Conference, 1996, pp. 269–272.

[3] Adrian Freed, John MacCallum, and Andy Schmeder, “Dy-
namic, Instance-based, Object-Oriented Programming (OOP)
in Max/MSP using Open Sound Control (OSC) Message Del-
egation,” in ICMC 2011, Huddersfield, England, 2011, ICMA.

[4] Mikael Laurson, Mika Kuuskankare, and Vesa Norilo, “An
Overview of PWGL, a Visual Programming Environment for
Music,” Computer Music Journal, vol. 33, no. 1, pp. 19–31,
2009.

[5] Matthew Wright, Adrian Freed, and Ali Momeni, “Open-
Sound Control: State of the Art 2003,” in Proceedings of
NIME, Montreal, 2003, pp. 153–159.

[6] Paul Hudak, “Conception, evolution, and application of func-
tional programming languages,” ACM Computing Surveys,
vol. 21, no. 3, pp. 359–411, 1989.

[7] Konstantin Läufer and Martin Odersky, “Polymorphic type
inference and abstract data types,” ACM Trans Program Lang
Syst, vol. 16, no. 5, pp. 1411–1430, 1994.

DAFX-4

http://www.youtube.com/user/vnorilo

	1 Introduction
	2 Advancing Visual Programming
	2.1 A Brief Survey of the Field
	2.2 Features of Kronos
	2.2.1 Functional programming
	2.2.2 Types and Polymorphism
	2.2.3 Reactivity
	2.2.4 Interoperability

	3 Graphics from Signals
	3.1 Signal Routing and Division of Labor
	3.2 The Metadata Protocol
	3.3 A Domain-speficic Language
	3.3.1 Atoms
	3.3.2 Shapes
	3.3.3 Brushes
	3.3.4 Transforms

	3.4 Limitations

	4 Case Studies
	4.1 Peak Meter
	4.2 Wave Scanner
	4.3 Advanced Visualization

	5 Conclusions
	6 References

