
Kronos Meta-Sequencer – From Ugens to Orchestra, Score and Beyond

Vesa Norilo
Centre for Music & Technology

University of Arts Helsinki
vno11100@uniarts.fi

ABSTRACT

This article discusses the Meta-Sequencer, a circular com-
bination of an interpreter, scheduler and a JIT compiler for
musical programming. Kronos is a signal processing lan-
guage focused on high computational performance, and
the addition of the Meta-Sequencer extends its reach up-
wards from unit generators to orchestras and score-level
programming. This enables novel aspects of temporal re-
cursion – a tight coupling of high level score abstractions
with the signal processors that constitute the fundamental
building blocks of musical programs.

1. INTRODUCTION

Programming computer systems for music is a diverse prac-
tice; it encompasses everything from fundamental synthe-
sis and signal processing algorithms to representing scores
and generative music; from carefully premeditated pro-
grams for tape music to performative live coding.

One estabilished classification of musical programming
tasks, arising from the MUSIC-N tradition [1, pp. 787-796]
[2], identifies three levels of abstraction:

1. Unit Generator

2. Orchestra

3. Score

Unit Generators are the fundamental building blocks of
musical programs, including oscillators, filters and signal
generators. Orchestras are ensembles of Unit Generators,
coordinated to behave as musical instruments. Finally, scores
encode control information – a high level representation
of a piece to be performed by the Unit Generator Orches-
tra. Most MUSIC-N family languages are based on distinct
domain languages for orchestras and scores; programming
unit generators from scratch is rarely addressed.

This paper addresses the problem of tackling all three lev-
els of hierarchy in a single programming language. It is
based on extending Kronos [3], a functional reactive signal
processing language, with the notion of a task scheduler
and a script interpreter capable of driving each other. This
notion enables a powerful expression of score metaphors,
including temporal recursion [4]. This is the concept of
the Meta-Sequencer – a programmable sequencer capable
of reprogramming itself.

Copyright: c©2016 Vesa Norilo et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

2. BACKGROUND

Contemporary musical programming languages often blur
the lines between ugen, orchestra and score. Semantically,
languages like Max [5] and Pure Data [6] would seem to
provide just the Orchestra layer; however, they typically
come with specialized unit generators that enable score-
like functionality. Recently, Max has added a sublanguage
called Gen to address ugen programming.

SuperCollider [7] employs an object-oriented approach
of the SmallTalk tradition to musical programming. It pro-
vides a unified idiom for describing orchestras and scores
via explicit imperative programs.

ChucK [8] introduces timing as a first class language con-
struct. ChucK programs consist of Unit Generator graphs
with an imperative control script that can perform interven-
tions at precisely determined moments in time. To draw an
analogy to MUSIC-N, the control script is like a score –
although more expressive – while the unit generator graph
resembles an orchestra. The ChucK model can also extend
to “natively constructed” ugens [8, pp. 25-26].

Languages specifically focused on ugens are both fewer
and more recent. Faust [9] is a prominent example, uti-
lizing functional programming and block diagram algebra
to enable compact descriptions of unit generators while
maintaining high computational efficiency. The functional
model is a good fit for computationally efficient signal pro-
cessing: its traits, such as immutable values, referential
transparency and suitability for equational reasoning [10]
enable a high degree of compiler optimization. My own
prior work with Kronos [3] is inspired by the Faust model,
seeking to contribute mixed-rate and event-driven systems
as well as type-based polymorphism and metaprogramming.

The problem of combining all three levels in a single
language is challenging yet intriguing. Successful orches-
tra/score languages like Max and ChucK have some facili-
ties for ugen programming [8, pp. 25-26]. The respective
tradeoffs include semantics that differ from the rest of the
environment, and computational efficiency far below ma-
chine limits. Brandt has studied ugen-type programming
with temporal type constructors [11] and related tradeoffs,
such as limitations in program semantics and a lack of real-
time capabilities.

This study approaches the problem from the opposite di-
rection: extending Kronos [3], a signal-processing, ugen-
orchestra-focused language upward to provide score capa-
bility. This is achieved by a novel, embedded domain lan-
guage inspired by the I/O Monad in Haskell [12] and the
concept of temporal recursion [4].

mailto:vno11100@uniarts.fi
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

3. META-SEQUENCER

The project that became the Kronos Metasequencer origi-
nated in an effort to improve the expressibility of outputs
in Kronos programs. While functional programming [13]
excels in expressing data flows and signal topologies, it is
less suitable for modeling any effects the program should
have on its surroundings. Functional programs do not en-
code state, but state is present in all the relevant input/out-
put devices attached to computers. Programs must mutate
that state in order to be observable (and potentially useful)
to their users.

One approach to the problem is to externalize the I/O con-
cerns. Faust [9] programs are assumed to output an audio
stream. As Kronos [3] extends signal processing to event
models such as MIDI and OSC [14], a more complicated
solution is required. The specification of the signal desti-
nation can still be externalized: whether a program should
output audio, OSC events, MIDI messages or text onto a
console could be supplied to the compiler as additional pa-
rameters, not indicated in the source code in any way.

The second, more refined approach could involve type
polymorphism: an appropriate output destination would be
determined based on the data type of the output. Programs
could specify the desired output behavior simply by return-
ing a type such as a MIDI event. While this approach has
benefits, the set of types becomes complicated as the va-
riety of output methods grows. In addition, the compiler
driver must interpret all the types: the output specification
quickly starts to resemble a mini-language of its own.

3.1 Haskell and I/O

It is instructive to look at how a pure, general purpose
functional language like Haskell [12] encodes I/O opera-
tions. At first glance, I/O code in Haskell appears impera-
tive: the syntax evokes assignment and side-effectful read
and write operations. A simple example from the Haskell
wiki is shown in Listing 1. Despite the code appearing
imperative, functional purity is not compromized: referen-
tial transparency [10] and equational reasoning remain in
force.

Listing 1. Simple Haskell program with I/O
main = do a <- ask "What is your name?"

b <- ask "How old are you?"
return ()

ask s = do putStr s
readLn

This implementation is powered by the I/O monad, which
provides a functional representation of an imperative pro-
gram, modeling the stateful effects caused by I/O actions
as an implicit data flow. Monadic I/O code is a domain
language within Haskell.

3.2 The I/O Domain Language

Various domain languages built in Kronos already exist;
these range for small-scale experiments such as document
generation to published work on graphics and animation
[15]. This section describes a domain language for I/O,
capable of enabling semantics such as evoked by Listing 2.

Do

Print 'What is your name?' With

ReadLn name => Do(PrintLn('Greetings, ' name '!'))

Figure 1. Abstract Syntax Tree of an Imperative Kronos Program

Listing 2. Kronos program with I/O
Greetings() {
Use Actions
Greetings = Do(

Print("What is your name? ")
name <- ReadLine()
PrintLn("Greetings, " name "!"))

}

3.2.1 The Imperative Interpreter

As metaprogramming is one of Kronos’ fundamental prin-
ciples [3], the I/O domain language is based on the concept
of second-order code generation: a functional dataflow pro-
gram constructing the syntax tree of an imperative pro-
gram. Data types are used to encode the abstract syntax
tree of the imperative program. For example, the AST gen-
erated by running Listing 2 is shown in Figure 1.

Similar to how I/O Actions in Haskell are effective only
at the root of the program entry point, the I/O language is
designed around an interpreter hook placed at the very end
of the program data flow. It is implemented as a foreign-
function call to the compiler driver written in C++. The
interpreter will then traverse the AST, executing the effect-
ful Print and ReadLn nodes.

3.2.2 Enabling Assignment Semantics

There is a non-obvious detail in the AST shown in Fig-
ure 1: the left-arrow syntax, simulating assignment, has
been translated to a node called ’With’. This node receives
the I/O action whose result value is bound to ’name’, and a
closure encompassing the remaining I/O actions that were
sequenced after it. The AST interpreter will invoke the I/O
action passed as the value, and invoke the closure with the
result of the I/O action as a parameter. If the result of the
closure is another I/O action, the interpreter will then pro-
cess that action.

To illustrate the assignment transformation, Listing 3 shows
how Listing 2 is lowered.

Listing 3. Example of Assignment Transformation
; after left-arrow transformation

Do(
Print("What is your name? ")
Invoke-With(

ReadLine()
name => PrintLn("Greetings, " name "!")))

3.2.3 The Interpreter as Compiler Driver

It is noteworthy that the closures shown in Listing 3 are
constructs of the core Kronos language. The interpreter

does not know how to compute: all numeric work is del-
egated to the dataflow compiler. This includes generation
of the interpreter ASTs: the closure shown in the trans-
formed version actually returns an imperative program to
print ’name’.

Execution of programs with actions is essentially a cy-
cle of interpretation of an imperative AST, alternating with
compilation and execution of pure functional code, which
may produce a new imperative AST.

For performance reasons, Kronos programs are statically
typed. However, the Kronos methodology is based on type-
generic programs: there are very rarely any type annota-
tions in the source code, as the compiler will estabilish the
types through whole-program type derivation.

As the interpreter drives JIT compilation, also providing
the root types for the compiler, it effectively appears to the
user as a dynamically typed language, where type-specific
routines are compiled on demand.

3.2.4 Control Flow

An important aspect of any imperative scripting is control
flow – decision points where the program flow could di-
verge based on run-time conditions. While such control
flow is highly toxic to high performance signal processing,
it is essential for many score-level tasks.

For these purposes, the imperative language contains an
If-node, structured in the well-known format of truth value
– then-branch – else-branch. The AST interpreter will re-
trieve the truth value and based on it, proceed on to either
the then-branch or the else-branch.

Please recall that ’If’ is a normal function. That means,
on one hand, that it can be used in the variety of ways func-
tions can: composed, applied partially, passed as a parame-
ter value, and so on. On the other hand, data flow demands
that all of its upstream children, truth-value, then-branch
and else-branch must be evaluated prior to it.

With this in mind, please consider a looping structure,
such as shown in Listing 4. Because one side of the condi-
tional branch refers recursively back to itself, a straightfor-
ward implementation of ’If’ would result in an infinitely
deep AST and nontermination. A common strategy to ad-
dress this problem in functional programming is lazy eval-
uation [13, p. 384], while imperative languages favor short-
circuiting or minimal evaluation. Both require specific sup-
port from the compiler.

Listing 4. Recursion and Control Flow
Countdown(count) {
Use Actions
Countdown =
If(count > 0

{ Do(
PrintLn(count)
Countdown(count - 1)) }

{ PrintLn("Done") })
}

Kronos can support a rudimentary form of explicit lazy
evaluation by specifying that the then-branch and the else-
branch are in fact closures, and should return the AST to
be taken by the interpreter. As anonymous functions can be
written simply by enclosing statements in curly braces, the
resulting syntax should be quite familiar to programmers.
An example of a recursive looping program is shown in

Interpreter

Compiler Sequencer I/O

Native Execution

Figure 2. Meta-Sequencer Program Flow

Listing 4. Without the intermediate closures, this program
would fail by getting stuck in an infinite loop in the AST
generation stage.

3.3 Temporal Recursion: Meta-Sequences

So far, the imperative language features discussed in this
paper have little relevance to computer music, as they are
little more than the staples of imperative programming de-
fined in a functional dataflow language designed for DSP.

However, a simple addition to the interpreter-compiler-
execution cycle will bring about a significant expansion to
musical possibilities. Kronos already features a sequencer
for timed reactive events [16]. Extending that sequencer to
schedule and fire imperative programs is a logical evolu-
tion. If, in addition, the imperative programs gain facility
to program the sequencer, the expressive power of the sys-
tem grows significantly.

This is the concept of the Meta-Sequencer: a fusion of an
interpreter, sequencer and a JIT compiler. The program
flow is shown in Figure 2. The interpreter traverses an
AST, directing it to fire I/O events or to compile a Kro-
nos function for execution either directly or as scheduled
by a sequencer. The compiled function may contain an in-
terpreter hook, cycling back to the interpreter for further
actions.

In fact, this closely follows the concept of temporal re-
cursion as presented by Sorensen [4], and related concepts
in the literature [17, 11, 18].

3.4 I/O Actions in Detail

This section summarizes the imperative I/O Action lan-
guage and the primitives of its AST, which are displayed
in Table 1.

3.4.1 After

After is the scheduling command. It can be used to sched-
ule an arbitrary AST for execution after a specified pe-
riod in seconds. Scheduling is sample-accurate and syn-
chronous with the audio stream.

3.4.2 Send

Send represents a discrete output event. The arguments to
this command are an address pattern and value. The ad-

Table 1. I/O Actions in Kronos
Action Arguments Description
After time fn run ’fn’ ’time’ secs later
Do actions run ’actions’ sequentially
For values fn apply ’fn’ to each element

in ’values’
Invoke-With action fn Pass result of ’action’ to ’fn’
If p t e If ’p’ is true, invoke ’t’hen

to obtain a new AST; else
invoke ’e’ for it.

Send address value Output ’value’ to ’address’
Send-To id addr val Send ’val’ to method ’addr in

instance ’id’
Print value Send(”#pr” value)
PrintLn value Do(Print(value) Print(”\n”))
ReadLine Read line from console and

return as a string
Start fn Start ’fn’ as a reactive instance

return an instance id.
Stop id Stops the instance ’id’

dress pattern determines the output method. An URI-type
scheme is used here: for example, OSC [14] outputs can be
specified by “osc://ip:port/osc/address/pattern”. The Print
command utilizes Send, specifying an address pattern re-
served for console output.

While arbitrary values can be passed to Send, the output
method may not be able to handle all data types. The OSC
encoder can handle primitive numbers, strings, truth values
as scalars and nested arrays, but more complicated types
such as closures are not supported.

3.4.3 Start, Stop, Send-To

Start instantiates a Kronos closure as a reactive object, re-
sponding to reactive inputs and producing a stream of out-
puts. Each instance is a discrete reactive system according
to the classification presented by Van Roy [19].

The return value of the Start command is an instance han-
dle. The referred instance can be stopped by passing the
handle to Stop. This can be done by the top-level REPL
or any script that fires within the sequencer. The handle is
also passed to the closure itself, enabling it to stop itself.

Send-To is a convenience function that works like Send,
but addresses an input within a specific instance identified
by a handle.

4. APPLICATIONS AND IMPLICATIONS

4.1 Reactive Event Processors

The Kronos signal model is based on reactive update prop-
agation [16]. The imperative ASTs participate in this sig-
nal model – if a reactive signal feeds a leaf of the AST, it
effectively becomes an event handler for that signal. This
results in a very simple definition of an OSC [14] monitor,
shown in Listing 5.

Listing 5. Reactive OSC Monitor
; listen to float values at OSC address pattern ’/a’

Start({ PrintLn(Control:Param("/a" 0)) })

This instance will print a line of text representing each
OSC method call that supplies a floating point value to
address ”/a”. Signal-flow-wise, Control:Param returns a
float scalar, which PrintLn translates into an imperative
program to print said scalar. This is in turn sent to the inter-
preter via the interpreter hook implicitly placed at the root
of the closure. Reactivity flows downstream from Con-
trol:Param, so the interpreter hook fires whenever there is
OSC input.

4.2 Generative Sounds

The next example, Generative Sound, utilizes temporal re-
cursion to construct a sonic fractal. The code is shown
in Listing 6. The fractal plays a sinusoid for a specified
duration, spawning delayed, recursive copies of itself to
generate increasingly dense partials.

Listing 6. Sonic Fractal
Import Gen

Fractal(f dur g) {
Use Actions

; time offset to next cluster

time-offset = Math:Sqrt(dur)

; its duration is the remaining time

next-dur = dur - time-offset

Fractal = Do(
; start sinusoid at frequency ’f’

id <- Start({ Wave:Sin(f) * g })

; stop it after ’dur’ seconds

After(dur Stop(id))

; spawn two more fractals at musical intervals

; of 2/3 and 6/5, after time offset

If(dur > 0.5
{ After(time-offset
Fractal(f * 2 / 3 next-dur g / 2)
Fractal(f * 6 / 5 next-dur g / 2)) })

)
}

The fractal could be made more musically interesting with
features such as randomized offsets or additional timbre
parameters. Even the simple form demonstrates the gener-
ative power of temporal recursion.

An additional benefit of the fractal is benchmarking: re-
call that the control script is both sample accurate and audio-
synchronous; in real-time playback, this has a significant
computational impact when a high number of closures are
scheduled to be compiled and played back at once.

In informal benchmarking, constructing and connecting
an instance (after initial warm-up) in Listing 6 happens
in 30µs on a laptop with Intel Core i7-4500U processor.
Sinusoid synthesis is computationally cheap, so instantia-
tion is the main constraint on real-time playback. As the
fractal features 2N sinusoids at step N , the software must
perform a corresponding number of instantiations sample-
synchronously in addition to sound synthesis. On the Core
i7-4500U, it can achieve 9 steps or up to 512 instantiations.
Polyphony could be increased by staggering the instantia-
tions in time, increasing latency (and thus amortization) or
grouping several sinusoids in a single instance – using os-
cillator banks.

4.3 Score Auralization

The final example, in Listing 7 demonstrates a simplistic
MUSIC-N descendant [2] system written entirely as a sin-
gle Kronos program. The program defines three functions:
a unit generator (Exp-Gen), an instrument (MyInstr) and a
score player/transformer (MyPlayer). The score is defined
as a matrix value (MyScore).

Exp-Gen is the sole representative of Kronos’ core ca-
pability: signal processing. It is an exponential function
generator working at audio rate, consisting of a mutiplier
and unit delay feedback. In this example it is used with
complex-valued parameters, resulting a machine code pro-
cedure with just a handful of instructions per generated
sample. Exp-Gen returns a reactive stream of floating point
scalars.

MyInstr is an instrument wrapper for the Exp-Gen gen-
erator, receiving high level parameters for duration, pitch
and amplitude. It computes complex coefficients based on
them, instantiates the unit generator and schedules it to
stop after the amplitude has decayed sufficiently. MyInstr
returns an I/O action that performs these steps.

MyPlayer applies MyInstr to the notes in the score. The
score is a list of 4-value tuples. The first value indicates the
start time of a note, followed by the parameters required by
MyInstr, duration, note number and amplitude. The start
time is consumed by the player, used to schedule instru-
ment invocations with the After command. The rest of the
tuple is passed directly on to the instrument invocation as
parameters.

The layers presented are intentionally simplistic. Differ-
ent parametrizations and hierarchies can be devised for ab-
stractions like multi-timbral scores, nested scores or real-
time capable instruments. For example, with a suitable
nested score format, MyPlayer could schedule instances
of itself that in turn schedule sub-scores. Such flexibility
is the result of the general purpose capability of the Meta-
Sequencer: with a handful of I/O hooks, an interpreter and
a closely integrated high performance JIT compiler, tem-
poral recursion [4] is sufficient for a wide range of musical
constructs.

Listing 7. Simple Ugen, Instrument and Score
Import Complex
Import Actions

; Unit generator: output an exponential function

; Can produce a sinusoid with complex-valued params

Exp-Gen(init coef) {
state = z-1(init state * Audio:Signal(coef))
Exp-Gen = state

}

; Instrument: configure, start and stop the ugen

MyInstr(dur pitch amp) {
Use Actions
Use Math

; compute complex coefficients

fsr = Audio:Rate()
; angular frequency from note number

w = Pi * 880 * Pow(2 (pitch - 69) / 12) / fsr
; radius; decay of 1/100 in ’dur’ time

r = Pow(0.01 1 / (dur * fsr))
coef = Complex:Polar(w r)
init = Complex:Cons(0 amp)

; instantiate an ugen and stop it after

; twice the duration (decay of 1/10000)

MyInstr = Do(
id <- Start({
Complex:Real(Exp-Gen(init coef)) })

After(duration * 2 Stop(id))
)

}

; Score format: <time> <duration> <note-number> <amplitude>

MyScore =
[(0 3 60 1)
(1 2 64 1)
(2 1 67 1)
(3 0.1 72 0.5)
(3.1 0.1 71 0.4)
(3.2 0.1 70 0.3)
(3.3 0.1 69 0.2)
(3.4 0.1 68 0.1)]

; Construct and schedule ’MyInstr’ instance for each

; note in the score.

MyPlayer(score tempo-scale instr) {
Use Actions
MyPlayer = For(score (time params) =>

After(time * tempo-scale instr(params)))
}
; Usage: MyPlayer(MyScore 1 MyInstr)

4.4 Compiler Stack and Real-Time Playback

The Meta-Sequencer is sample-accurate and audio synchronous;
the implication is that sometimes, JIT compilation must in-
terrupt the real-time audio thread. Even simple code takes
time to travel through the full LLVM stack; at minimum,
compile times are in the order of milliseconds, making it
hard to sustain uninterrupted real time playback.

However, the Meta-Sequencer is capable of synthesizing
a surprising range of algorithms in real time, allowing for
a small delay in the initial response. This is because of
type determinisim in the Kronos language [3]: the com-
piler output depends uniquely on the type of the closure
being compiled. This allows memoization of compiled clo-
sures based on their type, effectively reducing compilation
of already-known closures to a simple hash table lookup.

The implication is important for a concept of type loops in
temporal recursion. The type of each closure if determined
by its captures and arguments. For example, the type loop
in Listing 6 is closed: each recursion is type-invariant in
its captures and arguments. In such a case, no additional
compilation is required once the type loop has been com-
pleted.

5. FUTURE WORK

The introduction of the I/O language and temporally recur-
sive sequencer extend the reach of the Kronos program-
ming language upwards from signal processing towards
representations of music and scores. This study describes
the fundamentals required for such an extension; much
work remains in fulfilling the nascent potential.

Immediate technical concerns include the compilation per-
formance, as discussed in Secton 4.4. An interesting en-
hancement to the system would be analyze any scheduled
ASTs for closures that could be compiled anticipatively.

Core Kronos features dynamic as well as static compi-
lation. However, the AST interpreter requires a runtime

component that is so far absent from statically compiled bi-
naries. It is viable to produce such a run time and produce
dependency-free binaries from Meta-Sequencer programs
with closed type loops (see Section 4.4).

The development of the I/O Action language and related
usability aspects is also an interesting avenue for future
work. Enhancing the Kronos core library towards score
metaphors and any potential problems thus uncovered in
the compiler design represent an important strategy of in-
cremental improvement.

Graphical representation of imperative programs, as well
as integration to GUI tools, including PWGL and ENP [20]
remain compelling.

6. CONCLUSIONS

This study presented the Meta-Sequencer, an extension to
the Kronos programming language [3]. The implemetation
of an I/O Action Language, sourcing from the concepts in
the Haskell [12] I/O Monad, was discussed. The impli-
cations for musical applications, especially with the addi-
tion of temporal recursion [4] were explained and demon-
strates.

The study represents an attempt to extend a signal pro-
cessing language, previously focused on unit generator and
orchestra programming towards scores and musical abstrac-
tions. Kronos is an ideal platform for such a work, as it
focuses on meta-programming, extensibility and domain
languages.

Acknowledgments

Vesa Norilo’s work has been supported by the Emil Aalto-
nen Foundation.

7. REFERENCES

[1] C. Roads, the Computer Music Tutorial. Cambridge:
MIT Press, 1996.

[2] V. Lazzarini, “The Development of Computer Music
Programming Systems,” Journal of New Music
Research, vol. 42, no. 1, pp. 97–110, Mar. 2013.
[Online]. Available: http://www.tandfonline.com/doi/
abs/10.1080/09298215.2013.778890

[3] V. Norilo, “Kronos: A Declarative Metaprogramming
Language for Digital Signal Processing,” Computer
Music Journal, vol. 39, no. 4, 2015.

[4] A. Sorensen and H. Gardner, “Programming With
Time Cyber-physical programming with Impromptu,”
Time, vol. 45, pp. 822–834, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1869459.1869526

[5] M. Puckette and D. Zicarelli, MAX - An Interactive
Graphical Programming Environment. Opcode Sys-
tems, 1990.

[6] M. Puckette, “Pure data: another integrated computer
music environment,” in Proceedings of the 1996 Inter-
national Computer Music Conference, 1996, pp. 269–
272.

[7] J. McCartney, “Rethinking the Computer Music Lan-
guage: SuperCollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[8] G. Wang, P. R. Cook, and S. Salazar, “ChucK: A
Strongly Timed Computer Music Language,” Com-
puter Music Journal2, vol. 39, no. 4, pp. 10–29, 2015.

[9] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and
semantical aspects of Faust,” Soft Computing, vol. 8,
no. 9, pp. 623–632, 2004.

[10] C. Strachey, “Fundamental Concepts in Programming
Languages,” Higher-Order and Symbolic Computa-
tion, vol. 13, no. 1-2, pp. 11–49, 2000.

[11] E. Brandt, “Temporal type constructors for computer
music programming,” Ph.D. dissertation, Carnegie
Mellon University, 2002.

[12] P. Hudak, J. Hughes, S. P. Jones, and
P. Wadler, “A history of Haskell,” Proceedings
of the third ACM SIGPLAN conference on His-
tory of programming languages HOPL III, pp.
12–1–12–55, 2007. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1238844.1238856

[13] P. Hudak, “Conception, evolution, and application of
functional programming languages,” ACM Computing
Surveys, vol. 21, no. 3, pp. 359–411, 1989.

[14] M. Wright, A. Freed, and A. Momeni, “OpenSound
Control: State of the Art 2003,” in Proceedings of
NIME, Montreal, 2003, pp. 153–159.

[15] V. Norilo, “Visualization of Signals and Algorithms in
Kronos,” in Proceedings of the International Confer-
ence on Digital . . . , York, 2012, pp. 15–18.

[16] ——, “Introducing Kronos - A Novel Approach to
Signal Processing Languages,” in Proceedings of the
Linux Audio Conference, F. Neumann and V. Lazzarini,
Eds. Maynooth: NUIM, 2011, pp. 9–16.

[17] R. B. Dannenberg, “Expressing Temporal Behavior
Declaratively,” in CMU Computer Science, A 25th An-
niversary Commemorative, R. F. Rashid, Ed. ACM
Press, 1991, pp. 47–68.

[18] G. Wakefield, W. Smith, and C. Roberts, “Lu-
aAV: Extensibility and Heterogeneity for Audiovisual
Computing,” Proceedings of the Linux Audio Confer-
ence, 2010. [Online]. Available: https://mat.ucsb.edu/
Publications/wakefield smith roberts LAC2010.pdf

[19] P. Van Roy, “Programming Paradigms for Dummies:
What Every Programmer Should Know,” in New Com-
putational Paradigms for Music, G. Assayag and
A. Gerzso, Eds. Paris: Delatour France, IRCAM,
2009, pp. 9–49.

[20] M. Laurson, M. Kuuskankare, and V. Norilo, “An
Overview of PWGL, a Visual Programming Environ-
ment for Music,” Computer Music Journal, vol. 33,
no. 1, pp. 19–31, 2009.

http://www.tandfonline.com/doi/abs/10.1080/09298215.2013.778890
http://www.tandfonline.com/doi/abs/10.1080/09298215.2013.778890
http://doi.acm.org/10.1145/1869459.1869526
http://portal.acm.org/citation.cfm?doid=1238844.1238856
http://portal.acm.org/citation.cfm?doid=1238844.1238856
https://mat.ucsb.edu/Publications/wakefield_smith_roberts_LAC2010.pdf
https://mat.ucsb.edu/Publications/wakefield_smith_roberts_LAC2010.pdf

	 1. Introduction
	 2. Background
	 3. Meta-Sequencer
	3.1 Haskell and I/O
	3.2 The I/O Domain Language
	3.2.1 The Imperative Interpreter
	3.2.2 Enabling Assignment Semantics
	3.2.3 The Interpreter as Compiler Driver
	3.2.4 Control Flow

	3.3 Temporal Recursion: Meta-Sequences
	3.4 I/O Actions in Detail
	3.4.1 After
	3.4.2 Send
	3.4.3 Start, Stop, Send-To

	 4. Applications and Implications
	4.1 Reactive Event Processors
	4.2 Generative Sounds
	4.3 Score Auralization
	4.4 Compiler Stack and Real-Time Playback

	 5. Future Work
	 6. Conclusions
	 7. References

