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Abstract
This essay discusses some aspects of philosophy and aesthetics ap-

plied to computer science. In particular, what makes programs ugly
or beautiful, and how that relates to the philosophical traditions of
aesthetics.
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Introduction
Computing devices have become ubiquitous to the degree that the compu-
tation has become invisible – the user of mobile phones, computers and
televisions rarely has to be aware of the computational processes that un-
derpin these machines. While automated data processing and computation
is sometimes taken as a feature of the modern times, the idea of computing
machines is ancient, predating mathematical written notation.

Ancient Computers
Current understanding is that the abacus was the first widely estabilished
computational device (Ifrah, 2001), appearing as early as 2700–2300 BC in
Sumer. It was known to most ancient civilizations. The counting tokens
of the Roman abacus, calculi, became the very symbol and namesake for
calculation.

The use of mathematics in the ancient world had both mundane and
transcendental applications. On of the most sophisticated early mechan-
ical calculators was the Antikythera mechanism, which was likely use for
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astronomical purposes (Freeth, 2006). On the other hand, early equational
reasoning was codified in the 9th century in Persia by Muḥammad ibn Mūsā
al-Khwārizmī الخوارزمی ) موسى بن (محمد with the primary application in economics:
the share and transfer of land ownership.

Analytical Engine
With applications such as navigation placing increasing emphasis on trigonom-
etry, more sophisticated computational aids became necessary. To facilitate
trigonometric calculations in reasonable time, mathematical tables and in-
terpolation was used. However, construction of mathematical tables by hand
was error-prone.

This prompted Charles Babbage (1791–1871) to devise an automatic cal-
culator called the Difference Engine for production of mathematical tables.
Babbage’s plans to produce the Difference Engine, as well as its successor,
the Analytical Engine, a generalized mechanical computer, were thwarted by
the lack of funding and the lack of precision in the mechanical production
of his time (Halacy, 1970).

Of Objects and Meta-Objects
Babbage’s 19th century development effort faced similar practical consid-
erations as the manufacture of integrated circuits did 150 years later. The
financial implications of manufacturing a failed design forced Babbage to de-
velop a mechanical notation – a formal notation of flow diagrams describing
mechanical computers. This is akin to contemporary hardware description
languages used in the design of integrated circuits. As of this writing, the
correctness of Babbage’s notation for the Analytical Engine is not verified
(Johnstone, 2014).

Johnstone (2014) argues that the mechanical notation is even more re-
markable than the physical difference engine itself. He describes Babbage
as the “first individual to work with systems where the function transcends
the components” – a system in which the meta-object of the mind looms
larger than the physical, tangible object. The complex state-space of a ap-
paratus like the difference engine renders its physical manifestation or even
the construction plans less than useful in understanding its fundamental na-
ture and purpose. In contrast, the mechanical notation is the meta-object
– essentially, a data flow graph of pulleys, levers and switches. The me-
chanical notation can be used to produce plans and eventually a physical
manifestation of the meta-object.
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Universal Meta-Computers
Babbage’s ambition for the Analytical Engine was to produce a general
automated calculator. While the Difference Engine had a clear industrial
and military purpose, the Analytical Engine represents a desire for an all-
knowing oracle, an augment for human intelligence, an unerring instrument
for the perpetual quest for knowledge.

Such an omnipotent meta-object was proposed by Alan Turing in 1936
(Hodges, 2012). The Turing Machine is a mathematical representation of a
simple device that is nevertheless capable of simulating an arbitrary com-
puter algorithm. Turing devised the machine when working on the halt-
ing problem first presented by David Hilbert in the context of Diophantine
equations and later understood more generally – Turing proved the problem
unsolvable.

Robin Gandy (1919-1995) – a student of Turing’s – argued that Charles
Babbage’s Analytical Engine already contained the principle of a Turing
machine, with a near-orthogonal basis of operators. The important dis-
tinction is that Babbage’s mechanical notation deals with concrete physical
objects – the building blocks of his mechanical computers. Turing machine,
on the other hand, is primarily a meta-object. Even though it carries over
metaphors from the tangible world of Turing’s experience, like storage tape
and mechanical motors, its intention is not to be a plan for an actual com-
puter, but to model computation itself.

In the 1930s, Alonzo Church (1903-1995) proposed λ-calculus, a formal
system in mathematical logic based on function abstraction and application.
In 1936 Church proved, independently of Turing, that Hilbert’s halting prob-
lem was unsolvable. In 1952, Stephan Kleene, a student of Church’s, would
demonstrate that Church’s and Turing’s computability models were in fact
isomorphic, and formulate them as the Church-Turing thesis (Kleene, 1981).
Remarkably, the Turing machine and λ-calculus are equivalently powerful
models of computation. Church’s calculus discards the connection to the
tangible world, and has not even a tenuous resemblance to a physical en-
tity.

Mechanisms and Magicks
The Turing machine and λ-calculus represent, despite each being able to
encode the other, very different attitudes to the fundamentals of computa-
tion. There is an analogue to the traditions of science described by Kearney
(1971): the Turing machine is a prototypical mechanist device, the how of
computation, a meticulous exhibit of the minimalist aesthetic of engineering.
λ-calculus, on the other hand, has features of the magical: function com-
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position and constructs of incomprehensible depth, outside time and space:
the what of computation.

FORTRAN and LISP
Some of the early successful programming languages can be seen as aspects
of the mechanist and magical strains of computer science. In 1954, John
W. Backus designed FORTRAN – acknowledged as the first high-level pro-
gramming language (Backus, 1979). FORTRAN can be seen as a direct
extension of a Turing machine: a chronological sequence of operations that
manipulate the state of a memory device. FORTRAN was designed to im-
prove the productivity of programmers working on the various cumbersome
machine language dialects of the time.

Soon afterwards, the programming language LISP was devised by John
McCarthy in 1958 (Steele, 1984). It is modeled after the λ-calculus, and
based entirely on function abstraction and application. Remarkably, Mc-
Carthy did not implement LISP or even believe that it could be done. The
conception of LISP eval as an universal function, by Steve Russell in 1958, is
often described in a way that evokes a revelation – a sudden manifestation
of an implementation due to a breakthrough insight.

Aesthetics of Programming
A programmer’s choice of a language is influenced by several reasons. These
often arise from viewing programming as a primarily economic, commercial
and industrial activity. If a computer program is considered as a form of
human expression, different aspects of programming move to the forefront.

Kleene’s isomorphism Kleene (1981) proves that semantically similar
programs can be written in any programming language that is translat-
able to either the Turing machine code or λ-calculus. This includes the vast
majority of past and present programming languages. If the functionality
of a computer program is considered to be its primary feature, the choice of
programming language is largely inconsequential. However, most program-
mers feel very strongly about their choice of tools, languages and idioms.
This suggests that programs, as a form of human expression, have more to
them than their outward function. In the subsequent sections, I propose
aesthetics as a possible factor in the choice and valuation of programming
idioms.
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British aesthetics in the 18th century
According to Shelley (2014), the major works on aesthetics in the 18th cen-
tury Britain can be categorized in three groups: internal-sense theories,
imagination theories and association theories. Shaftesbury, the influential
proponent of internal-sense, posits that proper appreciation of beauty should
be rational and that it should seek the original, rather than the representa-
tion. In the context of computer programs, Shaftesbury could be understood
to say that any beauty in a program is the beauty of the mind that devised
it – perhaps compounded by the mind that designed the programming lan-
guage. However, this would appear to be representative beauty, since the
program is not the mind, and even the mind was taken by Shaftesbury to
merely represent the beauty of its divine creator.

Hutcheson was greatly influened by Shaftesbury, and built on his theory
by reinforcing the concept of an internal beauty-sense. Whereas Shaftesbury
argued that beauty is a trait of a mind, recognized by a mind, Hutcheson
claims that the “Power of Perception” that recognizes beauty is a sense like
the other senses – and that beauty is not only of the mind or of the represen-
tation of it (Shelley, 2014). Both Shaftesbury and Hutcheson maintain that
things are beautiful due to their proportion or order, “uniformity amidst
variety”, which certainly could be considered in the context of computer
programs.

Reid articulated Hutcheson’s idea about sensing beauty thus (in Shelley
2014):

Beauty or deformity in an object, results from its nature or struc-
ture. To perceive the beauty therefore, we must perceive the na-
ture or structure from which it results. In this the internal sense
differs from the external. Our external senses may discover qual-
ities which do not depend upon any antecedent perception ….
But it is impossible to perceive the beauty of an object, without
perceiving the object, or at least conceiving it.

Applying Reid, the beauty of a programming language would result from
its nature and structure, something which must be perceived and conceived
by the programmer in order for him or her to appreciate them.

In contrast to the internal-sense theorists, Addison posits that the ex-
perience of beauty stems from imagination. Burke built on the imagination
theory by introducing an aesthetic dualism: that of the beautiful, and that
of the sublime. According to Burke, beautiful excites the societal passion of
love, sublime excites the self-preservative passion of astonishment. Beautiful
things tend to be small, smooth, various, delicate, clear and bright: sublime
things are great, uniform, powerful, obscure and somber (Shelley, 2014).
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German aesthetics in the 18th century
Wolff was an early philosopher in the German tradition of aesthetics. He
was inspired by the mathematics and philosophy of Leibniz. In addition
to constructing a systematic philosophy out of Leibnizian thinking, he also
contributed significant original ideas. Wolff’s definition of beauty as perfec-
tion has strong parallels to computer programming. Perfection is formally
defined as the harmony and ordering of parts in a whole, but in addition,
substantively, as the suitability of the ordering in achieving that which was
the aim for the whole (Guyer, 2014). Wolff’s beauty has utilitarian as-
pects: the appeal of the refined body of an athlete, the intricate working
of a mechanical device, or by analogy, the harmonious construction of a
well-performing computer program. A beautiful building is a ”space that is
enclosed by art in order that certain functions can proceed there securely
and unhindered” (in Guyer 2014).

Wolff defines distinctness and indistinctness in cognition: thoughts are
clear when they are well known and distinguishable from other things. They
are obscure when indistinct (Guyer, 2014). This resonates with some best
practices in acknowledges in commercial programming, such as separation
of concerns and modularity.

Gottsched proposes beauty as the “sensitive cognition of perfection”.
Judgements of taste are not due to “wit, imagination or memory”, nor to any
“sixth sense” – “understanding” but not “reason”. According to Gottsched,
the judgement of taste tracks the rules that the experts intuitively know,
but are not governed by those rules (Guyer, 2014). Gottsched thus comes
close to defining what is considered tacit or embodied knowledge in the
current literature (Doy, 2008). Programming can be considered as a craft,
thus exemplifying the accumulation of tacit and embodied knowledge that
cannot be easily verbalized. Some of the vocabulary used by craftsman
programmers reflects this: “code smell” is a term widely used to describe
design that is certainly wrong, but hard to attribute to any specific detail,
pattern or technique that was used. The choice of the word “smell” can be
considered as a strong aesthetic judgement.

Baumgartner, who coined the term “aesthetics” in 1735, defines aesthet-
ics as the analogue of rational cognition (in Guyer 2014):

I cognize the interconnection of some things distinctly, and of
others indistinctly, consequently I have the faculty for both.
Consequently I have an understanding, for insight into the con-
nections of things, that is, reason (ratio); and a faculty for in-
distinct insight into the connections of things, which consists of
the following: 1) the sensible faculty for insight into the concor-
dances among things, thus sensible wit; 2) the sensible faculty
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for cognizing the differences among things, thus sensible acumen;
3) sensible memory; 4) the faculty of invention; 5) the faculty of
sensible judgment and taste together with the judgment of the
senses; 6) the expectation of similar cases; and 7) the faculty of
sensible designation. All of these lower faculties of cognition, in
so far as they represent the connections among things, and in
this respect are similar to reason, comprise that which is similar
to reason (analogon rationis), or the sum of all the cognitive fac-
ulties that represent the connections among things indistinctly.

Aesthetic judgements are separate from intellect, but similar as functions
of cognition – sensible cognition.

Structure, symmetry and order
A recurring theme in early aesthetics is perfection with a divine connotation.
Various writers describe perfection as symmetry, harmony and order. While
the λ-calculus and the Turing machine are celebrated for their universality –
capability of expressing any computation – the progress of computer science
since then has focused on what not to express. Structured programming
(Clark et al., 2000, p. 20) is a paradigm introduced in ALGOL in the late
1950s explicitly to rule out certain methods of flow control, favoring logically
structured nested program blocks instead of the freeform flow of the Turing
tape.

This imposes a particular symmetry on programs, which could perhaps
be even called harmony. Structured programming, like many inventions in
computer science, is typically described in economic terms: reduction of
errors, improving productivity. However, the parallel to the aesthetics of
order and symmetry is evident, so much so that the use of non-structured
methods, such as the goto statement, are almost universally frowned upon
(Dijkstra, 1968), even in contexts in which there is no rational basis for such
a preference.

Dewey: Experience and Expression
According to Leddy (2016) John Dewey, an American pragmatist, is best
known from his writing on the experience of art. For Dewey, the fusion of
separate elements into unity, while simultaneously enhancing their identity,
constitutes an experience, something that is associated with fulfillment and
satisfaction. A proper work of art is an important example of an experience.
An experience is not exclusively emotional, practical or intellectual, but
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related to the development of an idea, the fulfillment of which constitutes
an experience.

Notably for the programming perspective, Dewey associates an aesthetic
quality with thinking, and believes the experience of thinking provides emo-
tional satisfaction (Leddy, 2016). The idea of consummation and fulfillment
as a result of practical action resonates with multiple crafts, including the
Zen arts. For Dewey, intellectual and skilled pursuits are aesthetic by de-
fault.

Leddy (2016) describes the structure of Dewey’s “an experience” thus:

The subject undergoes something or some properties, these prop-
erties determine his or her doing something, and the process con-
tinues until the self and the object are mutually adapted, ending
with felt harmony. This even holds for the thinker interact-
ing with his or her ideas. When the doing and undergoing are
joined in perception they gain meaning. Meaning, in turn, is
given depth through incorporating past experience.

This idea has a direct parallel with the design and implementation of
a computer program. Particularily interesting is the articulation of the
emotional fulfillment that comes with the conclusion of such a project – for
the thinker interacting with his or her ideas, which is an apt description of
a programmer.

Similarly resonant is Dewey’s idea of expression. “Impulsion” is the
aspiration of a total organism to develop in response to pressure from envi-
ronmental interaction. Dewey counts various external objects, such as tools
and culture, as belonging to the total organism. The organism depends on
the environment to surive: the essential external objects must be acquired.
The opposition that the environment presents to the organism’s impulsion
must be overcome, which results in purpose and meaning: the result is ela-
tion. This stimulates reflective action, transforming the impulsion into a
medium for creativity (Leddy, 2016).

Wittgenstein: Connections
In contrast to earlier thinking on beauty, Wittgenstein criticized the idea of
beauty as a property belonging to an object - as a linguistic sign carrying
an intrinsic meaning. He proposes activities rather than descriptions as
the primary expression of aesthetics: a tailor’s work is appreciated not by
describing the suit but rather by wearing it (Hagberg, 2014).

Wittgenstein discusses the concept of correctness in musical context:
rule-learning by drills in arts like counterpoint and harmony enable the
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student to undestand the proper interpretation of aesthetic rules in any
particular context (Hagberg, 2014). This reflects the idea that action is
primary and that actual knowledge is encoded in complex, interconnected
systems rather than the words of a cultural-contemporary “language game”.

According to Hagberg (2014), Wittgenstein’s aesthetic judgement is culture-
dependent, and “both more immediate and expansive than a simple mech-
anistic account could accommodate”. The exact conditions for achieving
aesthetic satisfaction are impossible to codify.

Wittgenstein’s aesthetics emphasize the import of making connections
and associations – “connective analysis”. It is the kind of holistic, systemic
understanding that thinking based on linguistic signs and reduced meanings
will likely miss. This has implications for computer system design: if we
prescribe to Wittgenstein, the beauty or lack thereof in a software system
can only be determined from its totality – the innumerable connections
between all its parts.

Mathematical Beauty
Mathematical beauty and logical elegance could be considered the underpin-
nings of the normative aesthetics of computer science. Some properties that
are sometimes understood as beautiful in mathematics include astonishment
– how mathematical proofs can introduce unforeseen “worlds” by strange
leaps of intuition, only afterwards submitting to rigour. For Burke, astonish-
ment is a self-preserving property, the foundation of the sublime, of grand,
forbidding objects inspiring near-pious awe (Shelley, 2014). In software,
these adjectives some of the most complicated, critical and depended-upon
systems, such as operating systems, garbage collectors, virtual machines and
compilers.

Mathematical beauty is also associated with deep connections. Fun-
damental theorems, such as Euler’s formula that links trigonometry and
logarithms, is often cited as beautiful. Such connective beauty, indicative
of deeper truths and systemic organization, recalls Wittgenstein’s aesthetics
(Hagberg, 2014). Deep connections abound in computer science: functional
programming, originating in the λ-calculus, and object oriented program-
ming, arguably an extension of the Turing model, exhibit a surprising mutual
correspondence: the object–closure equivalence, dealing with encapsulation
and scoping of data, symbols and names.

Beauty and elegance are sometimes related to brevity. In philosophy,
Occam’s razor is the conjecture that when two alternative explanations for
a phenomenon exist, in the absence of other information, the simple expla-
nation is more likely to be correct. This statement concerns truth values; in
mathematics, simplicity is primarily aesthetic. Most mathematicians would
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likely agree that given two alternative formulations for a theorem, the sim-
pler one would more likely be beautiful. Simple computer programs are
also widely appreciated, especially if they accomplish a surprisingly involved
task.

Paul Dirac was a proponent of mathematical beauty, quoted as saying
that he prefers a beautiful theorem to a true one (Stewart, 2007, pp. 277-
279). While most mathematicians would likely require logical rigour and
consistency from the theorems they consider beautiful, Dirac’s argument is
a deeper one: he believed that the true laws of nature had to be beautiful,
and beauty acts as a clue for humanity in the search for deepest truths.
Beauty as a form of divine or transcendental guidance goes back all the way
to the British internal-sense theories of Shaftesbury and Hutcheson (Shelley,
2014).

Beauty in Programs
If mathematical beauty is sometimes considered as a guide to deep truths
of nature, programmatic beauty could be taken as an indication that the
program in question approach a “truth” or optimal arrangement from a
particular point of view. A beautiful program could be easy to read or
write or perhaps maintain in the future – this beauty could be explained in
the terms of the British imagination theories and absence of imagined pain
(Shelley, 2014).

Many philosophers have striven to put to words the experience of beauty.
Sometimes, the words themselves could be argued to more closely fit crafts
such as programming – a natural fusion of reason and creativity. Program-
ming is not “solved”, there is plenty of room for creativity and intuition.
Software systems are large, interconnected and difficult to understand fully,
true Wittgensteinian constructs (Hagberg, 2014). This is especially true as
they grow in scope and features are added.

Aesthetics can serve as an early indication of a program design going
wrong. Programs are built as layers upon layers of abstraction, and the
mistakes and imperfections on each layer cascade and accumulate superlin-
early. Aesthetics can guide software design as beauty guided Dirac in his
search for laws of nature (Stewart, 2007). Dirac did not believe that beauty
and truth are one and the same – he believed that beauty is necessary for
truth. However, as Huxley said (in Stewart 2007), “Science is organized by
common sense, where many a beautiful theory can be killed by an ugly fact.”
This is especially true in computer science, where execution, hardware, users
and I/O embody grisly realism in contrast to the pure bliss of reason.

Programming is indeed a discipline where advanced practitioners recog-
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nize an occasional need for an “ugly hack”. Yet, such hacks often relate to
highly tuned, well-performing programs: beautiful in the utilitarian sense
that Wolff describes (Guyer, 2014). As a counterexample, many excellent
textbooks and tutorials feature computer programs that are beautifully sim-
ple, distinct and clear – yet unusable in practice due to performing particu-
larily badly in terms of execution time or space. These programs exemplify
programming as communication; an aspect of programming with its own
distinct concerns.
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