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ABSTRACT

This paper introduces Kronos VST, an audio effect plugin con-
forming to the VST 3 standard that can be programmed on the fly
by the user, allowing entire signal processors to be defined in real
time. A brief survey of existing programmable plugins or develop-
ment aids for audio effect plugins is given. Kronos VST includes
a functional just in time compiler that produces high performance
native machine code from high level source code. The features of
the Kronos programming language are briefly covered, followed
by the special considerations of integrating user programs into the
VST infrastructure. Finally, introductory example programs are
provided.

1. INTRODUCTION

There are several callback-architecture oriented standards which
allow third parties to extend conformant audio software packages.
These extensions are colloquially called plugins. The plugin con-
cept was popularized by early standards such as VST by Stein-
berg. This paper discusses a plugin implementation that conforms
to VST 3. Other widely used plugin standards include Microsoft
DirectX, Apple Audio Unit and the open source LADSPA. Pure
Data[1] extensions could also be considered plugins.

As customizability and varied use cases are always encoun-
tered in audio software, it is no suprise that the plugin concept is
highly popular. Compared to a complete audio processing soft-
ware package, developing a plugin requires less resources, allow-
ing small developers to produce specialized signal processors. The
same benefit is relevant for academic researchers as well, who of-
ten demonstrate a novel signal processing concept in context in the
form of a plugin.

The canonical way of developing a plugin is via C or C++.
Since musical domain expertise is highly critical in developing
digital audio effects, there is often a shortage of developers who
have both the requisite skill set and are able to implement audio
effects in C++. One way to address this problem is to develop a
meta-plugin that implements some of the requisite infrastructure
while leaving the actual algorithm to the end user, with the aim
of simplifying the development process and bringing it within the
reach of domain experts who are not necessarily professional pro-
grammers.

This paper presents Kronos VST, an implementation of the
programmable plugin concept utilizing the Kronos signal process-
ing language and compiler[2]. The plugin integrates the entire
compiler package, and produces native machine code from tex-
tual source code while running inside a VST host, without an edit-
compile-debug cycle that is required for C/C++ development.

The rest of the paper is organized as follows; Section 2, Pro-
grammable Plugins and Use Cases, discusses the existing imple-
mentations of the concept. Section 3, Kronos Compiler Technol-
ogy Overview, briefly discusses the language supported by the plu-
gin. Section 4, Interfacing User Code and VST, discusses the in-
terface between the VST environment and user code. Section 5,
Conclusions, summarizes and wraps up the paper, while some ex-
ample programs are shown in Appendix A.

2. PROGRAMMABLE PLUGINS AND USE CASES

2.1. Survey of Programmable Plugins

2.1.1. Modular Synthesizers

Modular synthesizer plugins are arguably programmable, much as
their analog predecessors. In this case, the user is presented with
a set of synthesis units that can be connected in different configu-
rations. A notable example of such a plugin is the Arturia Moog
Modular.

Native Instruments Reaktor represents a plugin more flexible
and somewhat harder to learn. It offers a selection of modular
synthesis components but also ones that resemble programming
language constructs rather than analog synthesis modules.

A step further is the Max/MSP environment by Cycling’74
in its various plugin forms. The discontinued Pluggo allowed
Max/MSP programs to be used as plugins, while Max for Live is its
contemporary sibling, although available exclusively for the Able-
ton Live software.

2.1.2. Specialist Programming Environments

In addition to modular synthesizers, several musical programming
environments have been adapted for plugins. CSoundVST is a
CSound[3] frontend that allows one to embed the entire CSound
language into a VST plugin. More recently, Cabbage[4] is a toolset
for compiling CSound programs into plugin format.

Faust[5], the functional signal processing language, can be
compiled into several plugin formats. It has traditionally relied
in part on a C/C++ toolchain, but the recent development of lib-
faust can potentially remove this dependency and enable a faster
development cycle.

Cerny and Menzer report an interesting application of the com-
mercial Simulink signal processing environment to VST Plugin
generation[6].
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2.2. Use Cases for Programmable Plugins

The main differences between developing a plugin with an exter-
nal tool versus supplying an user program to the plugin itself boil
down to development workflow. The compilation cycle required
for a developer to obtain audio feedback from a code change is
particularily burdensome in the case of plugin development. In
addition to the traditional edit-compile-run cycle, where compila-
tion can take minutes, plugin development often requires the host
program to be shut down and restarted, or at least forced to rescan
and reload the modified plugin file.

In contrast, if changes can be made on the fly, while the plugin
is running, the feedback cycle is almost instantaneous. This is what
the KronosVST plugin aims to do. Several use cases motivate such
a scheme;

2.2.1. Rapid Prototyping and Development

Rapid prototyping traditionally means that the program is initially
developed in a language or an environment that focuses primarily
on developer productivity. In traditional software design, this can
mean a scripting language that is developer friendly but perhaps
not as performant or capable as C/C++. In the case of audio pro-
cessors, rapid prototyping can take place in, for example, a graph-
ical synthesis environment or a programmable plugin. Once the
prototyping is complete, the product can be rewritten in C/C++ for
final polish and performance.

2.2.2. Live Coding

Live coding is programming as a performance art. In the audio
context, the audience can see the process of programming as well
as hear the output in real time. The main technical requirement
for successful live coding is that code changes are relatively in-
stantaneous. Also, the environment should be robust to deal with
programming errors in a way that doesn’t bring the performance to
a halt. KronosVST aims to support live coding, although the main
focus of this article is rapid development.

2.3. Motivating Kronos VST

As programming languages evolve, it becomes more conceivable
that the final rewrite in a low level language like C may no longer
be necessary. This is one of the main purposes of the Kronos
project. Ideally, the language should strike a correct balance of
completeness, capability and performance to eliminate the need to
drop down to C++ for any of these reasons.

The benefit of this approach is a radical improvement in devel-
oper productivity – but the threat is, as always, that the specialist
language may not be good enough for every eventuality and that
C++ might still be needed.

The main disincentive for developers to learn a new program-
ming language is the perception that the time invested might not
yield sufficient benefits. Kronos VST aims to present the language
in a manner where interested parties can quickly evaluate the sys-
tem and its relative merit, look at example programs and audition
them in context.

3. KRONOS TECHNOLOGY OVERVIEW

This section presents a brief overview of the technology behind
KronosVST. For detailed discussion on the programming language,

the reader is referred to previous work [7] [8] [2].

3.1. Programming Language

Kronos as a programming language is a functional language[9]
that deals with signals. From existing systems, Faust[5] is likely
the one that it resembles the most. Both systems feature an expres-
sive syntax and compilation to high performance native code. In
the recent developments, both have converged on the LLVM[10]
backend which provides just in time and optimization capabilities.

As the main differentiators, Kronos aims to offer a type system
that extends the metaprogramming capabilities considerably[8].
Also, Kronos offers an unified signal model[7] that allows the
user to deal with signals other than audio. Recent developments
to Faust enhance its multirate model[?], but event-based streams
remain second class. Kronos is also designed, from the ground up,
for compatibility with visual programming.

On the other hand, Faust is a mature and widely used system,
successfully employed in many research projects. In comparison,
Kronos is still quite obscure and untested.

3.2. Libraries

The principle behind Kronos is that there are no built-in unit gener-
ators. The signal processing library that it comes with is in source
form and user editable. By extension, it means that the library
components cannot rely on any “magic tricks” with special com-
piler support. User programs are first class citizens, and can sup-
plant or completely replace the built-in library.

Also due to the nature of the optimizing compiler built into
Kronos, the library can remain simpler than most competing so-
lutions. Functional polymorphism is employed so that signal pro-
cessing components can adapt to their context. It supports generic
programming, which enables a single processor implementation
to adapt and optimize itself to various channel configurations and
sample formats. With a little imagination this mechanism can be
used to achieve various sophisticated techniques – facilities such
as currying and closures in the standard library are realized by em-
ploying the generic capabilities of the compiler.

As Kronos is relatively early in its development, the standard
library is continuously evolving. At the moment it provides func-
tional programming support for the map-reduce paradigm as well
as fundamentals such as oscillators, filters, delay elements and in-
terpolators.

3.3. Code Generation

Kronos is a Just in Time compiler[11] that performs the conversion
of textual source code to native machine code, to be immediately
executed. In the case of a plugin version, the plugin acts as the
compiler driver, feeding in the source code entered via the plugin
user interface and connecting the resulting native code object to
the VST infrasturcture.

3.3.1. Recent Compiler Developments

The standalone Kronos compiler is currently freely available in its
beta version. This version features compilation and optimization
of source code to native x86 machine code or alternatively transla-
tion into C++.

Currently, the compiler is being rewritten, with focus on com-
pile time performance. The major improvement is in the case of
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extended multirate DSP, where various buffering techniques can
be employed. The language semantics seamlessly support cases
where a signal frame is anything from a single sample to a large
buffer of sound, but the compile time could become unacceptable
as frame size was increased. The major enhancement in the new
compiler version is the decoupling of vector size and compilation
time, resulting from a novel redundancy algorithm in the polymor-
phic function specializer.

The design of the compiler is also revised and simplified, aim-
ing to an eventual release of the source code under a free software
license. As the code generator backend, the new version relies on
LLVM[10] for code generation instead of a custom x86 solution;
greatly increasing the number of available compile targets.

3.3.2. Optimization and Signal Rate Factorization

The aim of the Kronos project is to have the source code to look
like the way humans think about signal processing, and the gener-
ated machine code to perform like that written by a decent devel-
oper. This is the goal of most compiler systems, but very hard to
accomplish, as in most systems the developer needs to intervene
on relatively low level of abstraction to enforce that the generated
machine code is close to optimal.

Kronos aims to combine high level source code with high per-
formance native code. The programs should be higher level than
C++ to make the language easier for musicians, as well as faster
to write. However, if the generated code is significantly slower, a
final rewrite in C++ might still be required, defeating the purpose
of rapid development.

The proposed solution is to narrow down the capabilities of
the language to fulfill the requirements of signal processor devel-
opment as narrowly as possible. The Kronos language is by design
statically typed, strictly side effect free and deterministic, which is
well suited for signal processing. This allows the compiler to make
a broad range of assumptions about the code, and apply transfor-
mations that are far more radical than the ones a C++ compiler can
safely do.

A further important example of DSP-specific optimization is
the multirate problem. Languages such as C++ require the devel-
oper to specify a chronological order in which the program ex-
ecutes. In the case of multirate signal processing, this requires
manual and detailed handling of various signal processors that up-
date synchronously or in different orders.

As a result, many frameworks gloss over the multirate prob-
lem by offering a certain set of signal rates from which the user
may – and has to – choose from. Traditionally, this manifests
as similar-but-different processing units geared either for control
or audio rate processing, or maybe handling discrete events such
as MIDI. This increases the vocabulary an user has to learn, and
makes signal processing libraries harder to maintain.

Kronos aims to solve the multirate problem, combined with
the event handling problem, by defining the user programs as hav-
ing no chronology. This is inherent to the functional program-
ming model. Instead of time, the programs model data flow; data
flow between processing blocks is essentially everything that sig-
nal processing boils down to.

Each data flow is semantically synchronous. Updates to the in-
puts of the system trigger recomputation of the results that depend
on them, with the signal graph being updated accordingly. Special
delay primitives in the language allow signal flow graphs to con-
nect to previous update frames and provide for recursive loops and

delay effects.
Since the inputs and the data flows that depend on them are

known, the compiler is able to factorize user programs by their
inputs. It can produce update entry points that respond to a certain
set of system inputs, and optimize away everything that depends on
inputs outside of the chosen set. Each system input then becomes
an entry point that activates a certain subset of the user program –
essentially, a clock source.

Because the code is generated on the fly, this data flow fac-
torization has no performance impact, which renders it suitable to
use at extreme signal rates such as high definition audio as well as
sparse event streams such as MIDI. Both signal types become sim-
ple entry points that correspond to either an audio sample frame or
a MIDI event.

3.3.3. Alternative Integration Strategies

In addition to plugin format, the Kronos compiler is available as a
C++-callable library. There is also a command line compile server
that responds to OSC[12] commands and is capable of audio i/o.
The main purpose for the compile server is to act as a back end for
a visual patching environment.

The compiler generates code modules that implement an ob-
ject oriented interface. The user program is compiled into a code
module with a set of C functions, covering allocation and initial-
ization of a signal processor instance, as well as callbacks for plug-
ging data into its external inputs and triggering various update rou-
tines. It is also possible to export this module as either LLVM[10]
intermediate representation or C-callable object code.

4. INTERFACING USER CODE AND VST

To facilitate easy interaction between user code and the VST host
application, various VST inputs and outputs are exposed as user-
visible Kronos functions. These functions appear in a special pack-
age called IO, which the plugin generates according to the current
processing context. The user entry point is a function called Main,
which is called by the base plugin to obtain a frame of audio out-
put.

4.1. Audio I/O

A VST plugin can be used in a variety of different audio I/O con-
texts. The VST3 standard allows for any number of input and out-
put buses to and from the plugin. Each of these buses is labeled
for semantic meaning and can contain an arbitrary number of chan-
nels.

The typical use for multiple input buses is to allow for sidechain
input to a plugin. Multiple output buses, on the other hand, can be
used to inform the host that multiple mixer channels could be allo-
cated for the plugin output. The latter is mostly used in the context
of instrument plugins.

The Kronos VST plugin exposes the main input bus as a func-
tion called IO:Audio-In. The return type of this function is a tuple
containing all the input channels to the main bus of the plugin. The
sidechain bus is exposed as IO:Audio-Sidechain. Both functions
act as external inputs to the user program, propagating updates at
the current VST sample rate.

Currently, only a single output bus is supported. The channel
count of the output is automatically inferred from the Main func-
tion.
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4.1.1. Audio Bus Metadata

Programs that need to know the update interval of a given data flow
can interrogate it with the Kronos reactive metadata system. The
sample rate of the data flow in question becomes another external
input to the program with its own update context.

The Kronos VST plugin supplies update interval data for the
audio buses to the user program. On sample rate changes, the reac-
tive system can automatically update any computation results that
depend on it.

4.1.2. Multichannel Datatype

Polymorphism within the Kronos VST plugin allows user pro-
grams to be flexible in their channel configuration. Many signal
processors have implementations that do not vary significantly on
the channel count. A processor such as an equalizer would just
contain a set of identical filter instances to process a bundle of
channels.

For such cases, the Kronos VST library comes with a data
type that represents a multichannel sample frame. An atom of
this type can be constructed from a tuple of samples by a call to
Frame:Cons, which packages any number of channels into a single
frame. These frames have arithmetic with typical vector seman-
tics; operations are carried out for each element pair for matching
multichannel frames.

The Frame type also has an upgrade coercion semantic. There
is a specialization of the Implicit-Coerce function that can promote
a scalar number into a multichannel duplicate. The Kronos runtime
library widely calls the implicit coercion function to resolve type
mismatches. This means that the compiler is able to automatically
promote a scalar to a multichannel type. For example, whenever a
multichannel frame is multiplied by a gain coefficient, each chan-
nel of the frame is processed without explicit instructions from the
user program.

Because Kronos programs have only implicit state, this exten-
sion carries over to filter- and delay-like operations. The compiler
sees a delay operation on a multichannel frame and allocates state
accordingly for each channel. Therefore, the vast majority of algo-
rithms can operate on both monophonic samples and multichannel
frames without any changes to the user code.

4.2. User Interface

The VST user interface is connected to the user program via calls
to IO:Parameter. This function receives the parameter label and
range. The IO package constructs external inputs and triggers that
are uniquely identified by all the parameter metadata, which al-
lows for the base plugin infrastructure to read back both parameter
labels and ranges.

Any external input in the user code that has the correct la-
bel and range metadata attached is considered a parameter by the
base plugin. At the moment, each parameter is assigned a slider
in the graphical user interface. In the future, further metadata may
be added to support customizing the user interface with various
widgets such as knobs or XY-pads. An example user interface is
shown in Figure 1.

The parameters appear as external inputs from the user code
perspective, and work just like the audio input, automatically prop-
agating a signal clock that ticks whenever a user interaction or se-
quencer automation causes the parameter value to be updated.

Figure 1: An Example of a Generated VST Plugin Interface

However, the parameters are assigned a lower reactive priority
than the audio. Any computations that depend on both audio and
parameter updates ignore the parameters and lock solely to audio
clock.

This prevents parameter updates from causing additional out-
put clock ticks – in effect, the user interface parameters terminate
inside the audio processor at the point where their data flow merges
with the audio path. This is analogous to how manually factored
programs tend to cache intermediate results such as filter coeffi-
cients that result from the user interface and are consumed by the
audio processor.

4.3. MIDI

MIDI input is expressed as an event stream, with a priority be-
tween parameters and audio. Thus, MIDI updates will override
parameter updates but submit to audio updates.

The MIDI stream is expressed as a 32-bit integer that packs
the three MIDI bytes. Accessor functions MIDI:Event:Status(),
MIDI:Event:A() and MIDI:Event:B() can be called to retrieve the
relevant MIDI bytes.

MIDI brings up a relevant feature in the Kronos multirate sys-
tem; dynamic clock. MIDI filtering can be implemented by in-
hibiting updates that do not conform to the desired MIDI event
pattern. The relevant function is Reactive:Gate(filter sig) which
propagates the signal sig updates if and only if filter is true. A se-
ries of Gates can be used to deploy different signal paths to deal
with note on, note off and continuous controller events. Later, the
updates can be merged with Reactive:Merge().

5. CONCLUSIONS

This paper presented an usage scenario for Kronos, a signal pro-
cessing language. Recent developments in Kronos include a com-
piler rewrite from scratch. Kronos VST, a programmable plugin,
is the first public release powered by the new version.

The programmable plugin allows an user to deploy and mod-
ify a signal processing program inside a digital audio workstation
while it is running. It is of interest to programmers and researchers
attracted to rapid prototyping or development of audio processor
plugins. The instant feedback is also useful to live coders.

The Kronos VST plugin is designed to stimulate interest in
the Kronos programming language. As such, it is offered free of
charge to interested parties. The plugin can be used as is, or as
a development tool – a finished module may be exported as C-
callable object code, to be integrated in any development project.

A potential further development is an Apple Audio Unit ver-
sion. The host compatibility of the plugin will be enhanced in
extended field tests. Pertaining to the mainline Kronos Project, the
libraries shipped with the plugin as well as the learning materials
are under continued development. As the plugin and the compiler
technology are very recent, the program examples at this point are
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introductory. More sophisticated applications are forthcoming, to
better demonstrate the capabilities of the compiler.

A. EXAMPLE PROGRAMS

A.1. Tremolo Effect

Listing 1: Tremolo Source
Saw(freq) {

inc = IO:Audio-Clock(freq / IO:Audio-Rate())
next = z-1(0 wrap + inc)
wrap = next - Floor(next)
Saw = 2 * wrap - 1

}

Main() {
freq = IO:Parameter("Tremolo Freq" #0.1 #5 #20)
(l r) = IO:Audio-In()
gain = Abs(Saw(freq))
Main = (l * gain r * gain)

}

A.2. Parametric EQ

Listing 2: Parametric EQ Source
/* Coefficient computation routine ’EQ-Coefs’ omitted

for brevity */
EQ-Band(x0 a0 a1 a2 b1 b2) {
y1 = z-1(init(x0 #0) y0)
y2 = z-1(init(x0 #0) y1)
y0 = x0 - b1 * y1 - b2 * y2
EQ-Band = a0 * y0 + a1 * y1 + a2 * y2

}

EQ-Params(num) {
EQ-Params = (
IO:Parameter(String:Concat("Gain " num) #-12 #0 #12)
IO:Parameter(String:Concat("Freq " num) #20 #2000

#20000)
IO:Parameter(String:Concat("Q " num) #0.3 #3 #10))

}

Main() {
input = Frame:Cons(IO:Audio-In())
params = Algorithm:Map(band => EQ-Coefs(EQ-Params(band

)) [#1 #2 #3 #4])
Main = Algorithm:Cascade(Fitler:Biquad input params)

}

A.3. Reverberator

Listing 3: Simple Mono Reverb
RT60-Fb(delay rt60) {
RT60-Fb = Crt:pow(0.001 delay / rt60)

}

Main() {
Use Algorithm /* for Map and Reduce */
/* simplification: input is mono sum */
input = Reduce(Add IO:Audio-In())
rt60 = IO:Parameter("Reverb Time" #0.1 #3 #10) * IO:

Audio-Rate()
mix = IO:Parameter("Mix" #0 #0.5 #1)

/* settings adapted from the Schroeder paper */
allpass-params = [(0.7 #221) (0.7 #75)]
delay-times = [#1310 #1636 #1813 #1927]

/* compute feedbacks and arrange delay line params */
delay-params = Map(d => (d RT60-Fb(d rt60))

delay-times)

/* compute parallel comb section */
comb-sec = Map((dl fb) => Delay(input dl fb)

delay-params)

/* mono sum comb filters and mix into input */
sig = (1 - mix) * input +

mix * Reduce(Add comb-sec) / 4

Main = (sig sig)
}
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