
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333782259

Veneer: Visual and Touch-based Programming for Sound

Conference Paper · June 2019

CITATIONS

0
READS

27

1 author:

Some of the authors of this publication are also working on these related projects:

Kronos: Reimagining musical signal processing View project

PWGL, a visual programming language for music View project

Vesa Norilo

University of the Arts Helsinki

32 PUBLICATIONS   167 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Vesa Norilo on 14 June 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/333782259_Veneer_Visual_and_Touch-based_Programming_for_Sound?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/333782259_Veneer_Visual_and_Touch-based_Programming_for_Sound?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Kronos-Reimagining-musical-signal-processing?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PWGL-a-visual-programming-language-for-music?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vesa_Norilo?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vesa_Norilo?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_the_Arts_Helsinki?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vesa_Norilo?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vesa_Norilo?enrichId=rgreq-d35425518c977290a8e30867ddbd46e7-XXX&enrichSource=Y292ZXJQYWdlOzMzMzc4MjI1OTtBUzo3Njk2NzU4MDE2NTczNDRAMTU2MDUxNjQxOTkyMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Veneer: Visual and Touch-based Programming for Sound

Vesa Norilo
University of the Arts

Helsinki, Finland
vno11100@uniarts.fi

ABSTRACT
This paper presents Veneer, a visual, touch-ready program-
ming interface for the Kronos programming language. The
challenges of representing high-level data flow abstractions,
including higher order functions, are described. The ten-
sion between abstraction and spontaneity in programming
is addressed, and gradual abstraction in live programming is
proposed as a potential solution. Several novel user interac-
tions for patching on a touch device are shown. In addition,
the paper describes some of the current issues of web au-
dio music applications and offers strategies for integrating
a web-based presentation layer with a low-latency native
processing backend.

Author Keywords
NIME, programming, DSP, visual, touch

CCS Concepts
•Applied computing→ Sound and music computing;
•Software notations and tools → Visual languages;
•Human-centered computing → Touch screens;

1. INTRODUCTION
One of the transformative developments in computer pro-
gramming was the introduction of Fortran, a high level
programming language, in the 1950s. Fortran introduced
a radical idea: scientists and engineers would no longer
need the assistance of specialist computer programmers, but
rather could write programs themselves. [1]

Today that is certainly the case, but the idea that musi-
cians, music producers or composers should also write the
software they use professionally may seem far-fetched. Yet
it is actively pursued, with multiple music programming
languages being developed both academically and commer-
cially.

This study concerns Veneer, a visual interface developed
for programming musical signal processors in the Kronos
language. [21] Sources of friction, in both the user interface
and the language design are considered and solutions are
proposed.

2. BACKGROUND

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’19, June 3-6, 2019, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil.

Music seems to be a distinct programming task. One indica-
tion of this is the high number of research projects dealing
with music-specific programming languages, which I will
call Music Languages (MLs) in this paper. In the litera-
ture Dannenberg [5, pp. 3–4], Sorensen [28] and Wang [34]
emphasize the central role of time in music. According to
Kery and Myers, digital music is an example application of
Exploratory Programming, which features experimentation
and ideation with an open-ended specification. [11]

McLean and Wiggins discuss creativity in computer sci-
ence. They reposition Klee’s description of the painters’
creative process into the context of computer programming:
a work is a result of a continuous cycle of creation, percep-
tion, appraisal and adjustment. They note a similarity to the
bricolage programming described by Turkle and Papert, [31]
an intuitive, ad hoc method of programming, and emphasize
the importance of perception in evaluating the progress of
the work. [17]

2.1 Common Features of Music Languages
Since the early days of computer music, a three-layer ab-
straction has been utilized. The lowest level, that which
deals directly with audio signals, consists of ugens.1 [26,
pp. 783-818] Several ugens are composed into systems that
resemble traditional instruments. The musical information
that drives the instruments is called the score. [15]

The three-layer model is not apposite to all musical tasks,
and some of the more recent MLs eschew scores. Super-
Collider [16] and ChucK [33] do so in favour of script-like
control of the ugen graph, while Max 2 and Pure Data [24]
operate without a score layer, combining aspects of the ugen
and instrument layers into a all-encompassing patch.

Brandt [3, pp. 3-4] and Nishino [19] discuss some problems
in the ugen abstraction; the provided ugens may not be
suitable for the task at hand, in which case ugen systems
may prove opaque dead ends. Faust [23] proposes a method
of building ugen-like functionality from even simpler, more
generally adaptable primitives.

2.2 Visual Languages
As early as 1964, Ivan Sutherland fashioned Sketchpad, a
visually oriented programming system. [29] Fabrik was an
early attempt to visualize object-oriented programming. [9]
Commercial products attained a degree of success: Hyper-
card was widely acclaimed, and perhaps one of the earliest
successful enablers of end-user developers. LabVIEW [30]
is a prominent example of a commercially developed visual
dataflow language. Johnston et al. provide a comprehensive
overview of other visual dataflow languages. [10, pp. 21-23]

1“Ugens”, unit generators, are primitive operators in an
audio dataflow, f.e. oscillators, envelopes and filters.
2Commercial product by Cycling’74



When it comes to music, arguably the most successful
enabler of musician-programmers is Max, a commercial soft-
ware package. Max is fashioned as a library of predefined
program components that the user may connect with virtual
patch cords.

Various academic projects have also produced visual MLs.
Pure Data shares the pedigree of Max. [24] PWGL [14] is a
visual programming surface built on top of Common Lisp,
integrating a visual score editor. [12]

Myers suggests that the spatial capabilities of the human
brain are suited for visual programming. [18] In the case
of MLs, Laurson cites integration with musical scores as
an additional motivation. [13] Further arguments for and
against visual programming are summarized in [35].

3. PROGRAMMING AS MUSIC-MAKING
Music Languages do mean to lower the barrier to entry
for non-programmers. However, it is important to consider
musicians as more than just bad programmers. MLs should
be designed for domain experts, and seek to take advantage
of their unique strenghts.

In music, results are often evaluated perceptually by ear.
Program“tweaking”or“tuning” is done in a rapid sequence of
adjustment and listening. From the interaction perspective,
this indicates that the programming tools should be as
responsive as possible. Languages such as C++, where the
compilation cycle from source code to executable code takes
minutes, or hours, are not suitable for such workflow.

Many MLs provide real-time feedback and control. On the
extreme end are the languages geared towards live coding, a
form of performative programming. [27] I propose that the
real-time nature of live coding is important for a musical
mindset in programming, even if it is not performative at
all. Interestingly, similar strategies yield benefits in digital
pedagogy [8]. Perhaps real-time feedback makes it less
sternuous to maintain a mental model of the system being
programmed [2], facilitating both creativity and learning.

3.1 On Abstraction
Abstraction – information hiding – is a defining feature of
programming, according to Blackwell. [2] For the purposes
of live programming, abstraction can cut both ways: hiding
unnecessary information allows concentrating on the essen-
tial, more can be achieved with less code, results can be had
more quickly and programs can be less viscous with regard
to local change.

On the other hand, the mental model of the program
becomes more complicated with higher level of abstraction.
The program can behave in astonishing, unexpected ways.
When this happens, it is contrary to the flow of live pro-
gramming, and likely to disrupt the creative flow.

3.1.1 Abstraction in Max
Max, the prominent visual music language, eschews abstrac-
tion almost entirely. This is achieved by a strict one-to-one
relationship between program entities and their graphical
representation on the screen. Notably, Max does contain a
construct called “abstraction”, which allows the programmer
to encapsulate a subpatch inside a single box.

However, some of the problems cited in Max result from
the very lack of proper abstraction. McCartney proposes
that the static object structure is the fundamental reason for
many of its limitations. Blackwell quotes abstraction as one
of the defining features of programming [2], although perhaps
this is what prompts McCartney to write that many users
of Max “do not realize they are programming.” [16, p. 61].
Petre and Green argue that even though abstraction can

be a learning hurdle, in the end it could increase language
comprehensibility, protect against errors and mitigate other
usability problems, such as viscosity3. [7]

Blackwell discusses another cognitive challenge of program-
ming: the loss of direct manipulation. The programmer does
not achieve her goals directly, but rather via indirection, re-
quiring her to maintain a mental model of the machine she
is guiding. [2] Interestingly, the Max model of one-to-one
mapping between graphical widgets and program objects pre-
serves aspects of direct manipulation, by integrating control
widgets within the program.

3.1.2 Adding Abstraction to the Visual Domain
If the one-to-one mapping between on-screen and program
objects is abandonded, we can express powerful programs
more compactly. We could encode the principle of a repeti-
tive construct, such as a filter bank, rather than spell out
each component. Perhaps we can also write programs that
are less viscous: aspects of signal type, such as channel count
or value intervals, could propagate along the data flow rather
than requiring manual reconfiguration at every stage.

Both examples given in the prior paragraph are forms of
abstraction. We express a concept once, and programmati-
cally derive additional structure. This makes programs more
powerful, as a small change can have far-reaching effects.
Good abstraction makes for programs that are brief and to
the point, while bad abstraction makes for an incomprehen-
sible mess.

3.2 Deductive and Inductive Programming
Let us think about programming in terms of deduction and
induction. A generally accepted strategy for writing extensi-
ble, maintainable programs resembles deductive reasoning:
we strive to find a maximally general abstraction that suits
the task at hand. Doing so can reduce the coupling between
components and enable painless extension and modification
down the line.

However, I contend that deduction is a polar opposite to
the proposed interactive programming model. Thinking in
terms of abstractions is a valid strategy for composing music,
but is far removed from the performative mindset.

The opposite model of induction is better aligned with the
goals of the present study. We start from concrete values and
data flows, and perform gradual abstraction. For example,
we may realize that certain constants in our program could
be exposed as parameters, making a subpatch reusable in
different contexts. This is essentially the meaning of ab-
straction in lambda calculus; the constant that becomes a
variable is the lambda term.

This style of abstraction is particularly well suited for the
visual domain. An example implementation is described in
Section 4.2.4.

4. IMPLEMENTATION
This section describes an implementation of the concepts
discussed in the previous sections. It consists of the pro-
gramming language Kronos, as well as Veneer, the visual
interface that is the main topic of this paper.

4.1 Kronos: the Signal Processing Language
Kronos [21] is a functional language for designing signal
processors as discrete reactive systems (DRS) [32]. Each
DRS responds to a sequence of input events with a well-
defined sequence of output events. The time–value pair is a
3Viscosity refers to resistance to local change. In program-
ming it could indicate how easy it is to change the program
structure after the fact, or if parts of the program can be
changed independently from the rest.



good abstraction for signals in music systems, which range
from the high, steady data rates of audio samples (44.1kHz
or higher) to event-driven signal sources like instrument
controllers or MIDI signals.

This programming model has the advantages of consis-
tency and ubiquity, scaling from building ugens to compli-
cated orchestras. All musical tasks are modeled similarly:
by reactive data flows. Because the language only permits
a deterministic signal flow, the compiler is able to generate
any required stateful code, eliminating the class of errors
related to variables, assignment or side effects. For a proper
discussion of the language design, the reader is referred to
prior work. [21]

4.1.1 Abstract Syntax Tree and Data Flow
Of the existing Music Languages, FAUST [23] shares many
goals with Kronos. FAUST offers a strong ecosystem [6]
as well as an embeddable, highly efficient compiler. On
the other hand, Kronos places more emphasis on multi-rate
signal processing [20] and an expressive type system [21].

Of special interest to the present study is the syntactic
difference between the languages. FAUST features a concise
and powerful block diagram algebra. The abstract syntax
tree in FAUST describes how functions are composed, and the
final result is a description of how the output is computed. On
the other hand, Kronos has a more traditional syntax that
describes how data flows, and expressions result in signals.
From this it follows, that a simple visual representation of
the abstract syntax tree of a Kronos program is a data flow
diagram, apposite for a visual programming interface. The
isomorphism of the language in textual and visual form is
an important design criteria.

4.2 Veneer: the Patcher
Veneer is a visual frontend for the Kronos language, built on
the web platform. It can connect to a native back end via a
websocket, or utilize an embedded WebAssembly compiler.

4.2.1 Interactive Programming
Veneer is built to support the ideal of interactive program-
ming. Program changes are compiled in real time, and
the Kronos compiler enables turnaround time ranging from
dozens to hundreds of milliseconds depending on program
complexity.

In addition, the interface is built to enable direct ma-
nipulation of some aspects of the program: each numeric
constant can dynamically turn into an interactive control,
which can be tweaked without recompilation. Interactive
widgets can also be included in the program.

Another form of rapid feedback is provided with reactive
evaluators. An output visualizer can be placed at any node
in the signal graph, displaying either textual, graphical or
waveform results in real time.

Kronos programs are generic, and specialized to statically
typed flows. The only possible program error is an ill-typed
expression, such as destructuring a scalar or performing
arithmetic on a string. This is arguably the most difficult
aspect of the language, and Veneer tries to help by visualizing
the type derivation process in order to clarify the source of
the type error.

4.2.2 Some Gestures for Patching Interfaces
One purpose of the present study is to explore the de-
sign space of patcher interfaces. This section gives a brief
overview of the interactions in Veneer.

The patch display is implemented with scalable vector
graphics, and continuous pan and zoom are available with
second button mouse drags or swipe and pinch gestures.

11 22 33 44

(( aa bb cc dd ))

Figure 1: Cutting cables

**

443333 44

SqrtSqrt(( 33 ** 33 ++ 44 ** 44 ))

**

++

SqrtSqrt

Figure 2: Applying explode three times on a com-
plex expression

Nodes can be connected by clicking and dragging, with
cables snapping to nearby compatible sockets. Disconnection
is accomplished by a cut cesture, dragging over a set of cables
with a modifier key pressed. The cutter widget is illustrated
in Figure 1.

Alternatively, a node may be disconnected from all ca-
bles by shaking vigorously; this idea is adapted from the
eponymous visual compositing software Shake.

The user interface has an automatic patching facility,
which tries to connect all unconnected slots of selected nodes
into available slots, so that signal flows left-to-right and top-
to-bottom. Automatic layout functions are available for
aligning nodes along the top, bottom, left or right edges, as
well as justifying horizontally or vertically.

In addition to the basic functions outlined above, Veneer
offers tools to refactor expressions. Because nodes can hold
arbitrary Kronos expressions, subpatches can be collapsed
into a single node. Likewise, nodes containing more com-
plicated expressions can be exploded into subpatches. An
example is shown in Figure 2.

A common subset of collapse is gathering nodes into a
list or a tuple. There are direct commands for these tasks;
a wrapping tuple or list is created automatically and all
selected nodes are collapsed into it.

4.2.3 Visual Abstraction in Veneer
One of the main features of the Kronos language is the
support for anonymous functions (lambda abstractions) in
signal processing without efficiency tradeoffs. This allows
for functional programming staples, such as map and fold to
be used for constructing filter banks and cascades, fulfilling
the role loops have in imperative languages.

Veneer represents function application by patch cord con-
nections. An unconnected node is therefore a non-applied
function: its output is itself a function of the missing input,
a verb rather than a noun. Partially connected nodes are
shown in a grayed-out color and a rounded corner.

Such a verb can be provided as a parameter to a higher
order function, which can use it to construct algorithmic
routings. For example, see Figure 3, in which map is used to



MapMapfuncfunc

set1set1 set...set...

[[ 11 22 33 44 ]]

Figure 3: Additive synthesis via higher order func-
tion

SawSaw

ComposeCompose

2020

[[ 0.30.3 0.40.4 0.50.5 ]]

MapMap

8080

Figure 4: Partial application and function composi-
tion

produce an additive synthesizer by applying an oscillator to
each element of the list. Even though this is an audio-rate
process, the example uses very low frequencies in order to
provide discernible waveform plots.

An extension of the analogy is partial application, which
is, in Veneer, a partially connected node. By connecting
some inputs, but not others, we can leave blanks for a higher
order function to fill. This is useful in the case of a filter
bank, where a common signal fanout is implemented via
partial application.

A number of visual abstractions are shown in Figure 4.
The example is somewhat contrived for demonstration pur-
poses. A bank of resonator sweeps is built, again via map.
This time, the mapping function is composed as a serial
connection of four non-applied functions. First, the sweep
frequency becomes a signal via Sin, a sinusoid oscillator. We
follow up with partially applied, one-sided binary operators
to rescale the sine output to the interval of [200, 1400]. The
final stage is a partially applied Resonator, where signal
and bandwidth slots are connected, but frequency is luncon-
nected, thus becoming the parameter to the newly unary
function. The final mapping function provided to map is
a serial composition of all four stages. Even in an abstract
patch like this one, all the numeric values can be tweaked in
real time.

Map corresponds to a parallel routing. For serial routing,
Reduce can be used. Reduce works by combining the first
two elements in a list, using a function passed in as a pa-
rameter. A new list is constructed from the result of the
function and the tail of the original list, and subsequently
reduced again until the list has a single element. A simple
frequency modulation cascade is shown in Figure 5: the
reducer function is an ad-hoc specified binary function, com-
bining a modulator signal on the left hand side with an
operator frequency parameter on the right hand side.

4.2.4 Gradual Abstraction
Veneer patches are organized in workspaces of tabs, where
each tab can be a drafting tab, resembling a REPL, or a

[[ 00 11 0.50.5 22 ]]

ReduceReduce

Figure 5: Frequency Modulation synthesis with Re-
duce

named function. To support gradual abstraction, fragments
of a patch can be extracted to new functions. The fragment
is replaced with a single node, and a tab containing the
fragment is added to the workspace.

This simple refactoring tool is enough to enable visual
designation of lambda terms, as alluded to in Section 3.2.
The user may supply metadata for the function, which is
subsequently available in all the menus as well as autocom-
pletion. User functions are first-class in terms of application
with Map, Reduce or other higher order functions.

4.3 Multi-touch Patching
Recently, multi-touch capable mobile devices have grown in
computational power, making them increasingly attractive
to signal processing tasks. Many mobile platforms have
restricted JiT compilers, such as Kronos, in native applica-
tions. However, the adoption of WebAssembly in modern
mobile browsers has dramatically improved the outlook.

The scale-variable graphics in Veneer are a good fit for
conventional mobile gestures, such as finger panning and
pinch-zooming. Nodes can be moved with a finger, and the
shake gesture to disconnect is particularly satisfying.

I found touch also attractive for making connections: the
user can simply touch the endpoints simultaneously. Because
touch targets can be hard to hit precisely, Veneer prioritizes
the nearest unconnected input slot when touch-patching.
This makes the act of replacing a connection in a partially
connected node less convenient (the cable has to be cut first),
but the common case is significantly easier.

Because touch devices often have no physical keyboards,
and thus no convenient keyboard shorcuts, some shortcuts
are represented in touch mode as an additional floating
toolbar. The toolbar affects touch modality: each icon can
be tapped, in which case it affects the mode of the subsequent
touch gesture. Alternatively, the mode is kept active while
the user holds the touch on the icon.

As of this writing, the mode icons include evaluate, which
activates audio output or a display on the nodes the user
touches, cut, which changes finger swipes on the canvas to
cut gestures (see Section 4.2.2) and causes taps to cut nodes,
and select, which allows the user to select additional nodes
without clearing the existing selection. In addition, undo
and redo are provided on the toolbar when applicable. The
less common functionality is available in the application
menu.

4.4 Audio on the Web Platform
For a long time, user-generated audio was an afterthought on
the web platform. In the recent years this has been changing
with the introduction of more latency-friendly technologies
in all major browsers.

4.4.1 WebAssembly
WebAssembly is a new low-level, efficient bytecode format de-
signed for the web and JiT-compilers. It offers performance



that approaches native code. As WebAssembly features lin-
ear memory, latency issues due to garbage collection are not
inherent to the design. For embedding into Veneer, Kronos
was compiled to WebAssembly, as well as enhanced with a
WebAssembly backend to dynamically generate new signal
processors within the browser.

4.4.2 ScriptProcessorNode and AudioWorklet
ScriptProcessorNode was the initial mechanism for writ-
ing low-latency audio processors for the web audio API. It
remains the only one that is widely implemented. The main
problem in the design is the fact that audio processors must
share the single javascript thread and event loop with the
entire application. Any functionality in the application can
block audio computation and result in a glitch.
AudioWorklet is an improved design for custom audio

processors. AudioWorklets run in a separate javascript con-
text, and do not implicitly share resources with the UI thread.
AudioWorklets can theoretically reach latency characteris-
tics similar to native browser audio functions. In practice,
browser implementations are not yet up to the standard of
native audio applications.

Browsers fall short particularly in input latency, as well as
good support for multi-channel pro audio interfaces. With
regard to the developer perspective, low latency multithread-
ing (atomics and shared memory) is nascent, especially due
to setbacks related to security. 4 Audioworklets are sup-
ported in Chrome only, and the implementation fails to set
the correct floating point mode, leading to denormal issues.
Hopefully these issues will be worked out in the near future.

4.4.3 Native Backend Integration
For best performance, lowest latency and widest I/O support,
native applications are still superior to web applications.
As an alternative to running the embedded WebAssembly
compiler within the browser, Veneer can also act as the
front-end to a native compile server.

As Veneer is still a web application, it is limited to the TCP
protocol for communication. In addition to code, control
data must be sent to the backend: communication latency
is still important, even though audio processing happens
outside of the browser.

Initial tests with HTTP were successful up to a point, but
the problem with HTTP is a lack of pipelining and true full
duplex communication. The client must poll the server, and
no further requests can be sent before the full round trip has
been completed for the previous one. Experimental support
for HTTP pipelining can help in this regard, but fortunately
there is a better solution: WebSockets enable full-duplex
streaming over TCP and are well-supported in browsers.

The Kronos package includes krpcsrv, a websocket server
capable of acting as a compilation server and DSP engine
for Veneer.

5. DISCUSSION
At present, Veneer is more like a hypothesis than a research
result. It is not hard to find examples where increased visual
abstraction can become counterproductive. For example,
to understand, or better yet, create, the patch in Figure 4,
one has to internalize several abstract concepts. How does
that go along with the stated goal of spontaneous, real-time
programming?

Obtaining solid data on how well a programming tool

4“Spectre”and“Meltdown”were widespread security exploits
that caused Chrome to temporarily disable thread shared
memory for Javascript altogether, and likely delayed other
implementations.

suits its purpose is notoriously difficult. [35, p. 2] It is
particularly challenging to assemble a sufficient number of
musician-programmers willing to partake in user tests. If
testing the methodology requires users to learn new concepts,
the ask is even greater.

Clearly this work needs to move towards such user tests in
order to validate or falsify usability claims. In order to reach
an adequate mass of users, it is essential to lower the barrier
to entry, and build compelling example implementations
to motivate musicians to try the technology and provide
feedback.

5.1 Future Work
The web platform is a central driver in making the tech-
nology more accessible without the hurdles installation or
configuration. It opens up the possibility of building an on-
line course around the concepts. This could a viable strategy
for gathering user tests and approaching a quantitatively
credible appraisal of the proposed methodology.

5.1.1 New Interactions
The design space of visual, spatial programming interfaces
remains interesting. New interactions specific to time are
intriguing. In this paper, subsonic frequencies were used in
examples in order to make waveforms discernible. It could
be useful and educational to be able to manipulate time
on the global scale, and zoom into the behavior of a signal
graph on a sample-per-sample level. Further, a rewindable
timeline, where the programmer could inspect the state of
the signal graph at any given point, could be useful.

5.1.2 Language Support
Veneer has a relatively loose coupling with the Kronos lan-
guage. It could be used as a patching frontend to other
languages as well. Due to consistent syntax, Lisp-family
languages could be particularly suitable. One possibility
for a front-end integration is PWGL, a Lisp-based visual
programming environment sharing the pedigree with Kronos.
[14]

5.1.3 Timelines
Veneer and Kronos handle time via memory and state. As
of now, there are is no Veneer representation of the more
recent temporal mechanisms added to Kronos, such as meta-
sequencing and temporal recursion. [22]

The integration of timelines into the patching metaphor,
or augmenting the patcher with sequencer-like capabilities
is an intriguing avenue of further research.

5.2 Availability
Kronos, along with a minimal but growing set of learn-
ing material, as well as the source code, is freely available
at https://kronoslang.io. The web-based patcher can
be tried at https://kronoslang.io/live. The example
patches from this paper are also available online in interac-
tive form: https://kronoslang.io/nime2019.html.

6. CONCLUSIONS
This paper discussed aspects of visual programming of musi-
cal systems, including background on both Music Languages
and visual languages. Hypotheses on a good interface for
musical programming were proposed, and an implementa-
tion to test them out was described. The study extends to
touch-based programming with the patching metaphor, and
proposes some gestures and design concepts for a good user
experience.

The technology backing the research in this study features
an advanced functional dataflow language and compiler,



Kronos, as well as Veneer, an exploratory programming
surface built on the web platform. The recent WebAssembly
integration of Kronos enables the entire system to function
in a modern browser. The program code is freely available
as open source.

This paper is intended as an opening for exploration and
discussion of the patching metaphor and novel interfaces
and interactions. The hypotheses presented can not be
properly tested without extensive community interaction.
Any interested parties are thus more than welcome to engage
with the technology, and I remain grateful for all the valuable
input the community may wish to provide.

7. ACKNOWLEDGMENTS
Vesa Norilo’s work was supported by the Academy of Finland,
award number SA311535.

8. REFERENCES
[1] J. Backus. The History of FORTRAN I, II, and III.

Annals of the History of Computing, 1(1):21–37, 1979.

[2] A. Blackwell. First steps in programming: A rationale
for attention investment models. In Human Centric
Computing Languages and Environments, 2002.
Proceedings. IEEE 2002 Symposia on, pages 2–10.
IEEE, 2002.

[3] E. Brandt. Temporal type constructors for computer
music programming. PhD thesis, Carnegie Mellon
University, 2002.

[4] Cycling’74. Max 6, 2011.

[5] R. Dannenberg. Languages for computer music.
Frontiers in Digital Humanities, 5:26, 11 2018.

[6] D. Fober, Y. Orlarey, and S. Letz. FAUST
Architectures Design and OSC Support. In Proc. of the
14th Int. Conference on Digital Audio Effects
(DAFx-11), pages 213–216, 2011.

[7] T. Green and M. Petre. Usability analysis of visual
programming environments: a “cognitive dimensions”
framework. Journal of Visual Languages and
Computing, 7(2):131–174, 1996.

[8] C. Hancock. Real-time programming and the big ideas
of computational literacy. PhD thesis, Massachusetts
Institute of Technology, 2003.

[9] D. Ingalls, S. Wallace, Y. Chow, F. Ludolph, and
K. Doyle. Fabrik: A visual programming environment.
SIGPLAN Not., 23(11):176–190, 1988.

[10] W. Johnston, J. Hanna, and R. Millar. Advances in
dataflow programming languages. ACM Comput. Surv.,
36(1):1–34, 2004.

[11] M. Kery and B. Myers. Exploring exploratory
programming. In Visual Languages and
Human-Centric Computing, Raleigh, USA, 2017.

[12] M. Kuuskankare and M. Laurson. ENP: A system for
contemporary music notation. Contemporary Music
Review, 28(2):221–235, 2009.

[13] M. Laurson. Patchwork: A Visual Programming
Language and some Musical Applications. PhD thesis,
Sibelius Academy Helsinki, 1996.

[14] M. Laurson, M. Kuuskankare, and Vesa. Norilo. An
Overview of PWGL, a Visual Programming
Environment for Music. Computer Music Journal,
33(1):19–31, 2009.

[15] V. Lazzarini. The Development of Computer Music
Programming Systems. Journal of New Music
Research, 42(1):97–110, 2013.

[16] J. McCartney. Rethinking the Computer Music
Language: SuperCollider. Computer Music Journal,

26(4):61–68, 2002.

[17] A. McLean and G. Wiggins. Bricolage programming in
the creative arts. 22nd Annual Psychology of
Programming Interest Group, 2010.

[18] B. Myers. Visual programming, programming by
example, and program visualization: a taxonomy.
ACM SIGCHI Bulletin, 17(4):59–66, 1986.

[19] H. Nishino, N. Osaka, and R. Nakatsu. Unit-generators
considered harmful (for microsound synthesis): A novel
programming model for microsound synthesis in
lcsynth. In ICMC, 2013.

[20] Vesa. Norilo. Recent Developments in the Kronos
Programming Language. In Proceedings of the
International Computer Music Conference, Perth,
2013.

[21] Vesa. Norilo. Kronos: A declarative metaprogramming
language for digital signal processing. Computer Music
Journal, 39(4):30–48, 2015.

[22] Vesa. Norilo. Kronos meta-sequencer–from ugens to
orchestra, score and beyond. In Proceedings of the
International Computer Music Conference, 2016.

[23] Y. Orlarey, D. Fober, and S. Letz. FAUST: An
Efficient Functional Approach to DSP Programming.
In G. Assayag and A. Gerszo, editors, New
Computational Paradigms for Music, pages 65–97.
Delatour France, IRCAM, Paris, 2009.

[24] M. Puckette. Pure data: another integrated computer
music environment. In Proceedings of the 1996
International Computer Music Conference, pages
269–272, 1996.

[25] C. Roads. the Computer Music Tutorial. MIT Press,
Cambridge, 1996.

[26] A. Sorensen and A. Brown. aa-cell in practice: An
approach to musical live coding. In Proceedings of the
International Computer Music Conference, pages
292–299. International Computer Music Association
(ICMA) Copenhagen, 2007.

[27] A. Sorensen and H. Gardner. Programming With Time
Cyber-physical programming with Impromptu. Time,
45:822–834, 2010.

[28] I. Sutherland. Sketchpad a man-machine graphical
communication system. Transactions of the Society for
Computer Simulation, 2(5):R–3, 1964.

[29] J. Travis and J. Kring. LabVIEW for Everyone:
Graphical Programming Made Easy and Fun (National
Instruments Virtual Instrumentation Series). Prentice
Hall PTR, 2006.

[30] S. Turkle and S. Papert. Epistemological Pluralism
and the Revaluation of the Concrete. Journal of
Mathematical Behavior, 11(1):3–33, 1992.

[31] P. Van Roy. Programming Paradigms for Dummies:
What Every Programmer Should Know. In G. Assayag
and A. Gerzso, editors, New Computational Paradigms
for Music, pages 9–49. Delatour France, IRCAM, Paris,
2009.

[32] G. Wang and P. Cook. ChucK : A Concurrent ,
On-the-fly , Audio Programming Language. In
International Computer Music Conference, pages 1–8,
2003.

[33] G. Wang, P. Cook, and S. Salazar. ChucK: A Strongly
Timed Computer Music Language. Computer Music
Journal2, 39(4):10–29, 2015.

[34] K. Whitley. Visual programming languages and the
empirical evidence for and against. Journal of Visual
Languages & Computing, 8(1):109 – 142, 1997.

View publication statsView publication stats

https://www.researchgate.net/publication/333782259

